You are here

Computational Spectroscopy

Schedule

Wednesday, 15 January 2020 to Saturday, 30 May 2020
Total hours: 50
Hours of lectures: 50

Examination procedure

  • Report or seminar
  • oral exam

Prerequisites

Fundamentals of mathematics and quantum-mechanics.

Syllabus

The course aims at providing the theoretical fundamentals of computational methods for modeling and understanding spectroscopic properties; it also aims at giving some basic knowledge of rotational-vibrazional spectra.

Rotational and vibrational spectroscopy. Classical and quantum mechanical nuclear Hamiltonian. Expansion of ro-vibrational Hamiltonian. Second order vibrational perturbation theory (VPT2). Perturbative effects: Fermi and Coriolis interactions. Methods for treating resonances: DVTP2, GVPT2, DCPT2, HDCPT2. Rotational-vibrational spectra of linear-, symmetric-, spherical- and asymmetric- top molecules. Composite methods for accurate structural and spectroscopic properties.  Collisional effects on molecular spectra: line-shapes. Instrumetation for vibrational and rotational spectroscopy. 

 

Educational Goal

The course aims at deepening the knowledge on molecular spectroscopy, providing advanced notions on the rotational and vibrational spectroscopic properties of molecules in the gas phase and illustrating state-of-the-art theoretical-computational methods for the simulation of the vibrational and rotational spectra of small and medium-sized molecules.

Bibliographical references

- D. Papoušek, M. R. Aliev, Molecular Vibrational/RotationalSpetra, Elesevier, Amsterdam (1982).

-M. R. Aliev, J. K. G. Watson, in MolecularSpectroscopy: ModernResearch, Vol. III, ed. K. NarahariRao, Academic Press, pp. 2 – 67 (1985).

-I. M. Mills, in MolecularSpectroscopy: ModernResearch, eds. K. NarahariRao, C. WeldonMathews, Academic Press, pp.115 – 140.

-G. Duxbury, InfraredVibration-RotationSpectroscopy, John Wiley & Sons, Chichester (2000).