You are here

Methodologies for the Social Sciences II: Quantitative

Schedule

Wednesday, 15 January 2020 to Wednesday, 26 February 2020
Total hours: 20
Hours of lectures: 20

Examination procedure

  • Written test

Prerequisites

Compulsory for the 1st year students of the PhD Programme in "Political Science and Sociology"

Compulsory for the 1st year students of the PhD Programme in "Transnational Governance"

Optional for the 4th and 5th year students of the MA Programme in "Political and Social Sciences"

Syllabus

The course consists in an introduction to quantitative data analysis for social and political science research,  with a particular focus on linear regression. After a more  general introduction on the nature of quantitative research, it will start from the basics of quantitative analysis: types of variables, data sets, simple descriptive statistics. It will then cover all the main aspects of regression analysis: its assumptions, the estimation technique, its application to concrete research problems, the presentation of results. The course will conclude by giving an overview of other types of regressions that participants might need to use in their future research (particularly discrete choice and nested models). At the end of this course, participants will be able to select the appropriate method for their research question, carry out basic quantitative analysis (including descriptive tables and graphs) as well as linear
regressions, and they will be able to meaningfully interpret the results of these methods. The course combines the theoretical study of basic statistical analysis with applied, practical exercises using the statistical programme Stata.

Bibliographical references

(1)  Lewis-Beck, C. and LewisBeck,M. (2016) Applied Regression: An Introduction.Thousand Oaks, California: SAGE

 

(2)  UCLA, Institute for Digital Research and Education, STATA Learning Modules, https://stats.idre.ucla.edu/stata/modules/