

Knots and Applications

Dalla matematica dei nodi alla topologia del DNA

Renzo L. Ricca

Department of Mathematics & Applications – U. Milano-Bicocca

renzo.ricca@unimib.it

Knots and Applications

Dalla matematica dei nodi alla topologia del DNA

Renzo L. Ricca

Department of Mathematics & Applications – U. Milano-Bicocca

renzo.ricca@unimib.it

Summary

Knots and Applications

Dalla matematica dei nodi alla topologia del DNA

Renzo L. Ricca

Department of Mathematics & Applications – U. Milano-Bicocca

renzo.ricca@unimib.it

Summary

- **1. Lecture 1: knots in art and science, origin of knot theory, Tait tabulation, topological equivalence and invariants, minimal diagrams, Gauss linking number, Reidemeister moves.**

Knots and Applications

Dalla matematica dei nodi alla topologia del DNA

Renzo L. Ricca

Department of Mathematics & Applications – U. Milano-Bicocca

renzo.ricca@unimib.it

Summary

- **1. Lecture 1:** *knots in art and science, origin of knot theory, Tait tabulation, topological equivalence and invariants, minimal diagrams, Gauss linking number, Reidemeister moves.*
- **2. Lecture 2:** *ribbon concept and self-linking invariant, writhe and twist, DNA topology, skein relations and knot polynomials, examples of computation.*

Knots and Applications

Dalla matematica dei nodi alla topologia del DNA

Renzo L. Ricca

Department of Mathematics & Applications – U. Milano-Bicocca

renzo.ricca@unimib.it

Summary

- **1. Lecture 1:** *knots in art and science, origin of knot theory, Tait tabulation, topological equivalence and invariants, minimal diagrams, Gauss linking number, Reidemeister moves.*
- **2. Lecture 2:** *ribbon concept and self-linking invariant, writhe and twist, DNA topology, skein relations and knot polynomials, examples of computation.*
- **3. Laboratory:** *explorations with KnotAtlas, LinKnot, KnotPlot.*

Lecture 1

- **An intuitive approach:**
 - *Knots in art and science: from arts and crafts to DNA biology*
 - *Knots in mathematics: theorems, numerics and platonic figures*
- **A little bit of history:**
 - *Origin of knot theory: Kelvin's string theory and Tait's tabulation*
- **The key concept:**
 - *Topological equivalence and invariants: playing with continuity*
- **Let's get serious:**
 - *Elements of knot theory: classification issues and basic definitions*
 - *Gauss linking number: from definition to application*
 - *Minimal crossing number and minimal diagram*
 - *Tait's tabulation re-visited: a source of inspiration*
 - *Reidemeister's moves to encode topological equivalence*

Knots in arts & crafts

Funeral Celtic stone

Knots in arts & crafts

Church of S. Croce (Florence): detail

Knots in arts & crafts

Pictorial representation of psyche

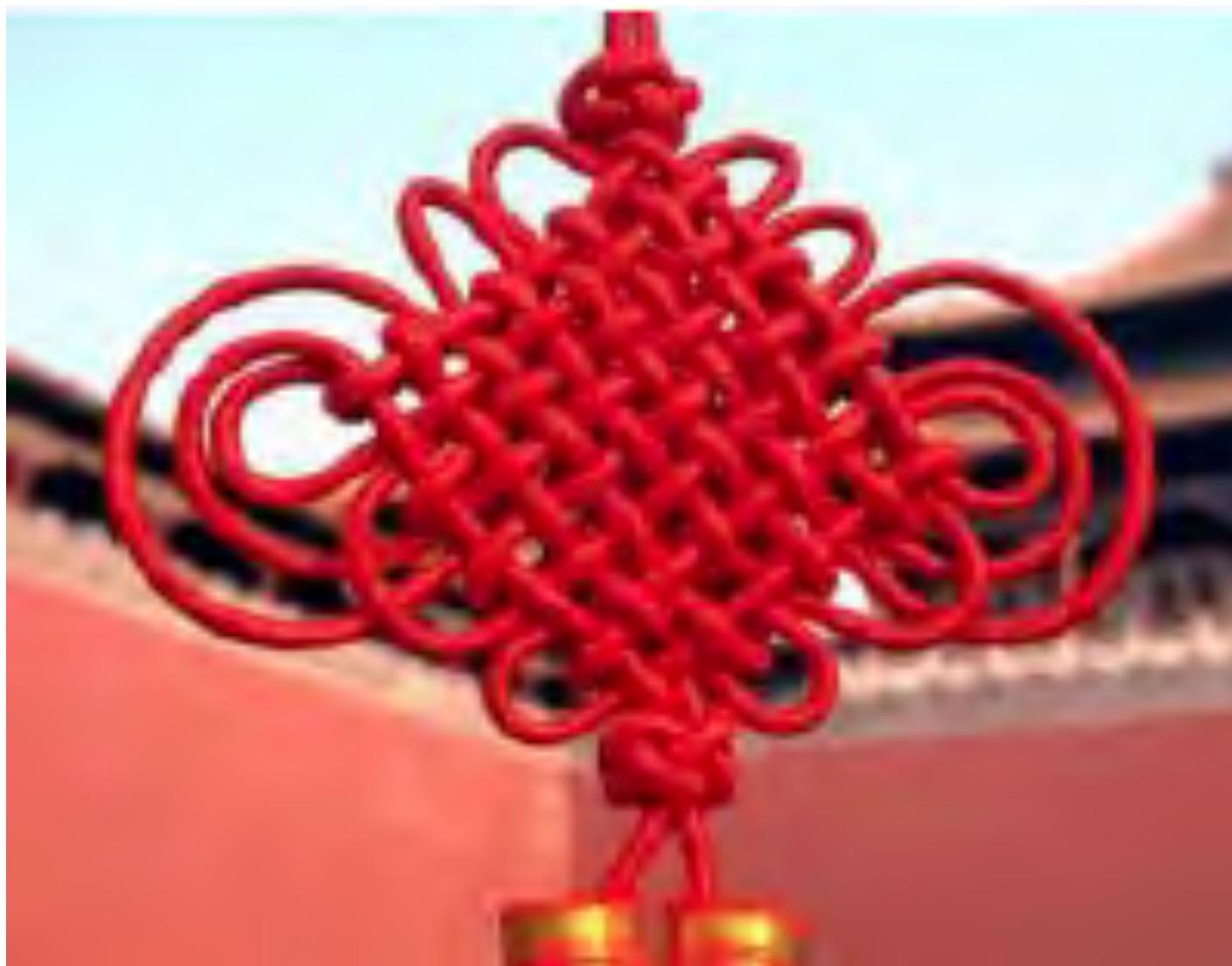
Knots in manufactures

Woven ropes of jute

Knots in manfactures

Loop of rope

Knots in manifactures



Chinese ornament

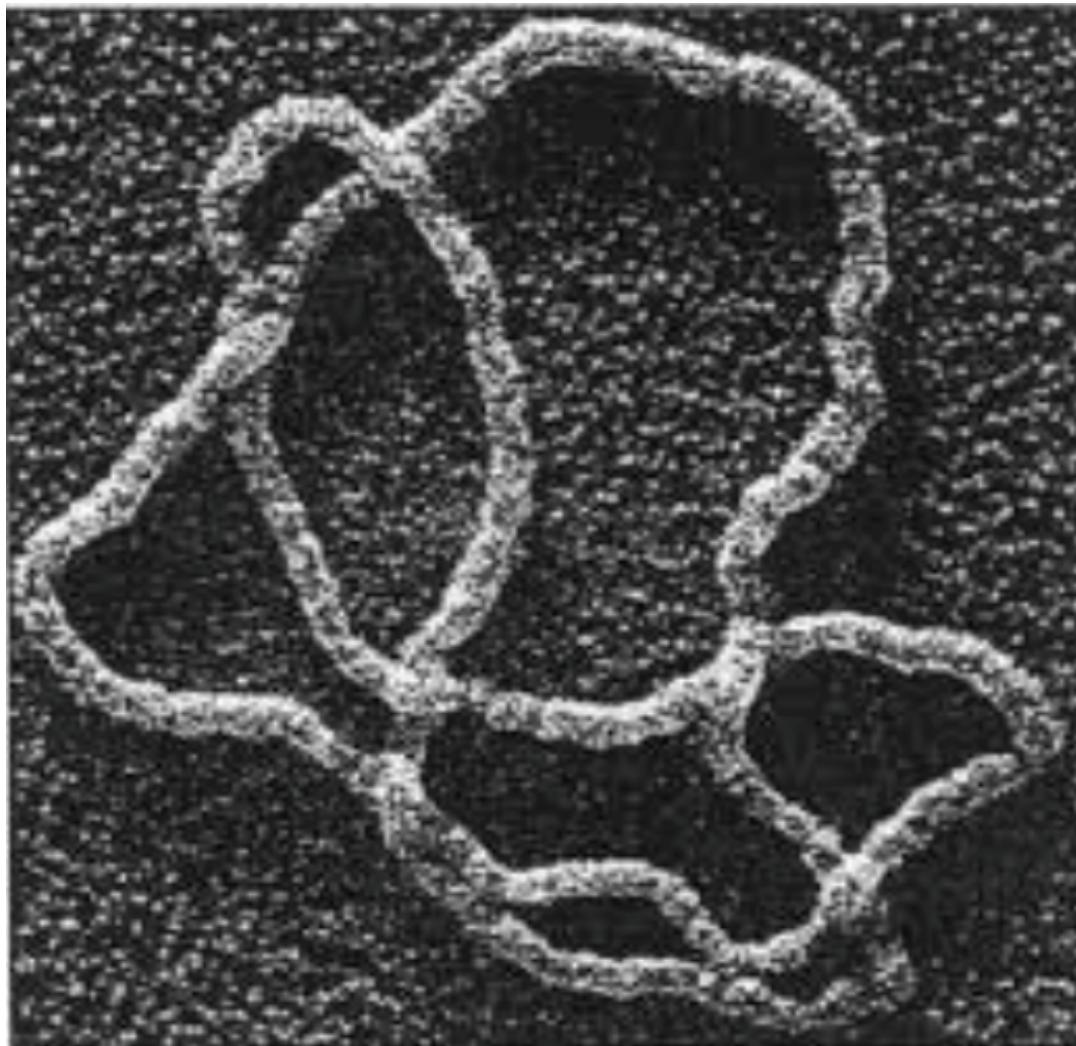
Knots in nature

Knotted grapevine

Knots in nature

Knotting of hagfish (Missinoide)

Knots in nature



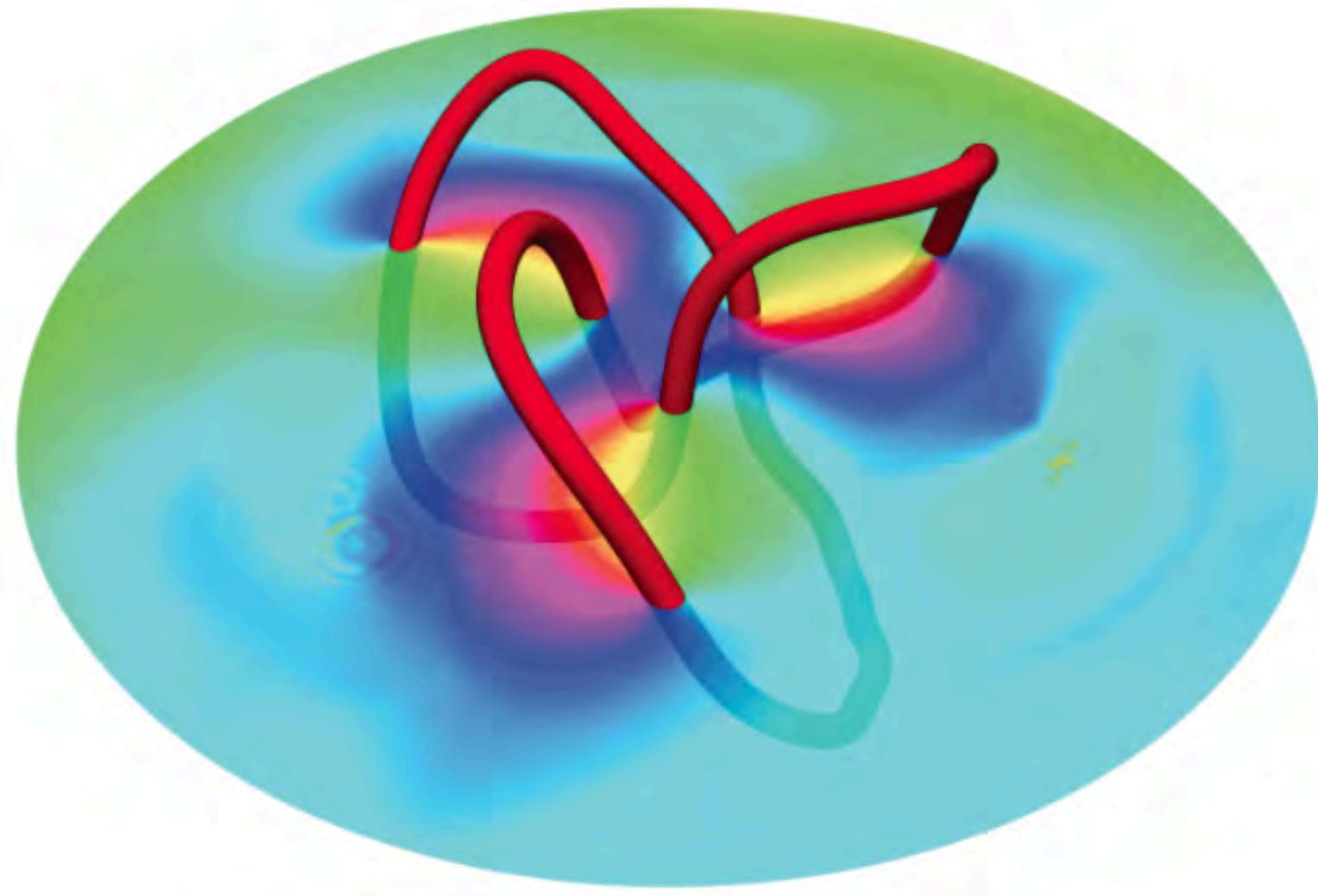
Knotted DNA (Dean et al., 1985)

Knots in technology



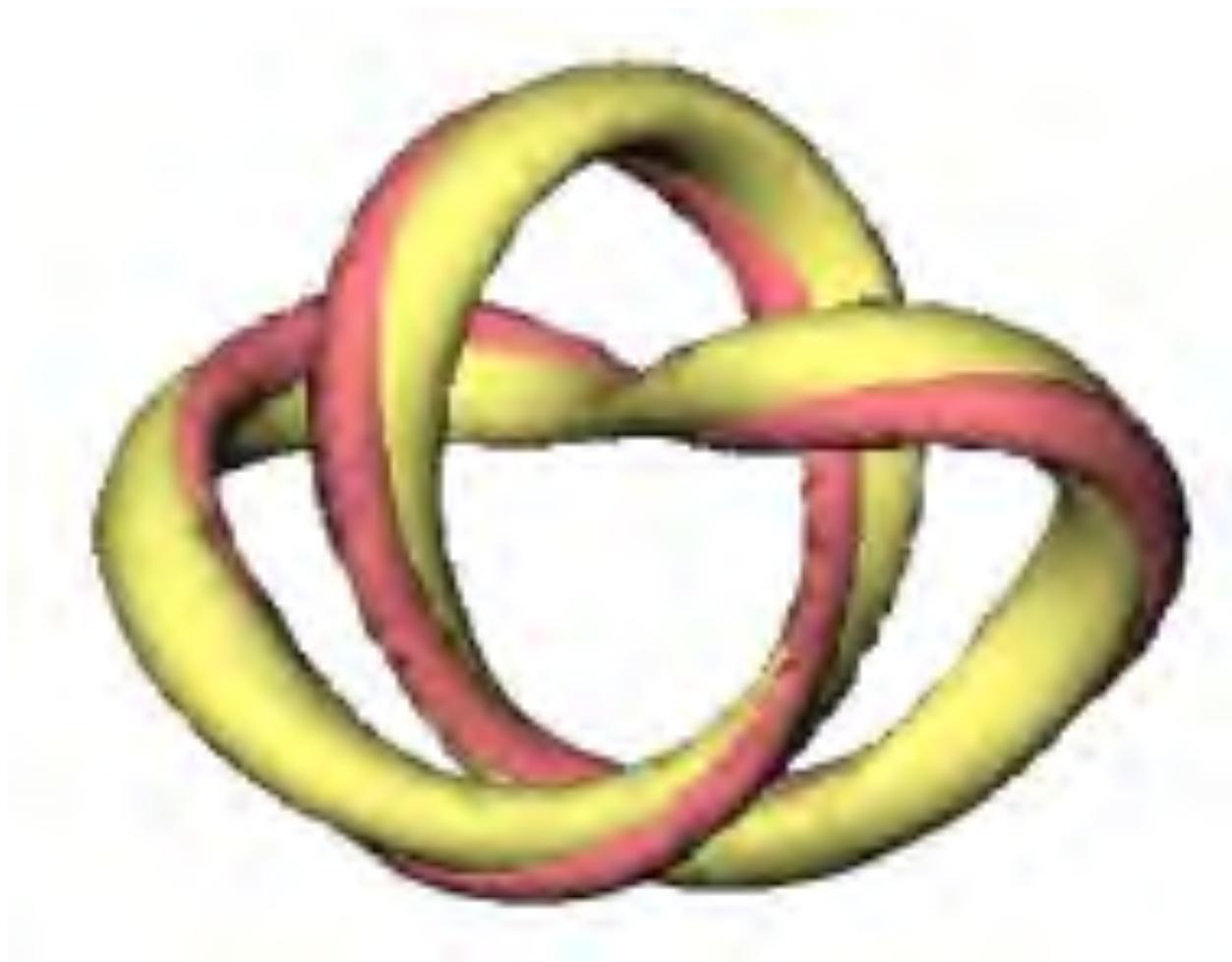
Linkage of crystal structures (Matsuura et al., 2006)

Knots in technology



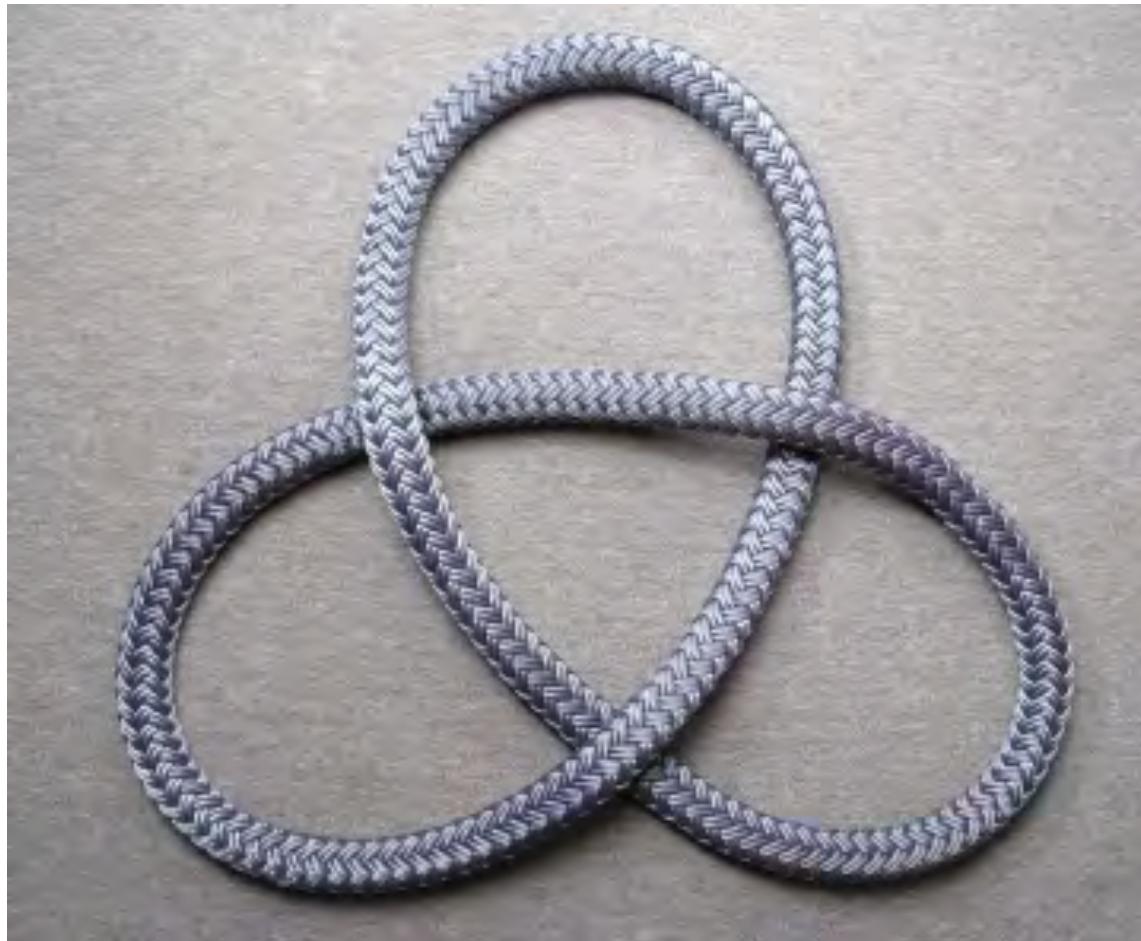
Phase defects in optics (Dennis et al, 2010)

Knots in physical theory



Solitons in field theory (Sutcliffe, 2007)

Knots in mathematics



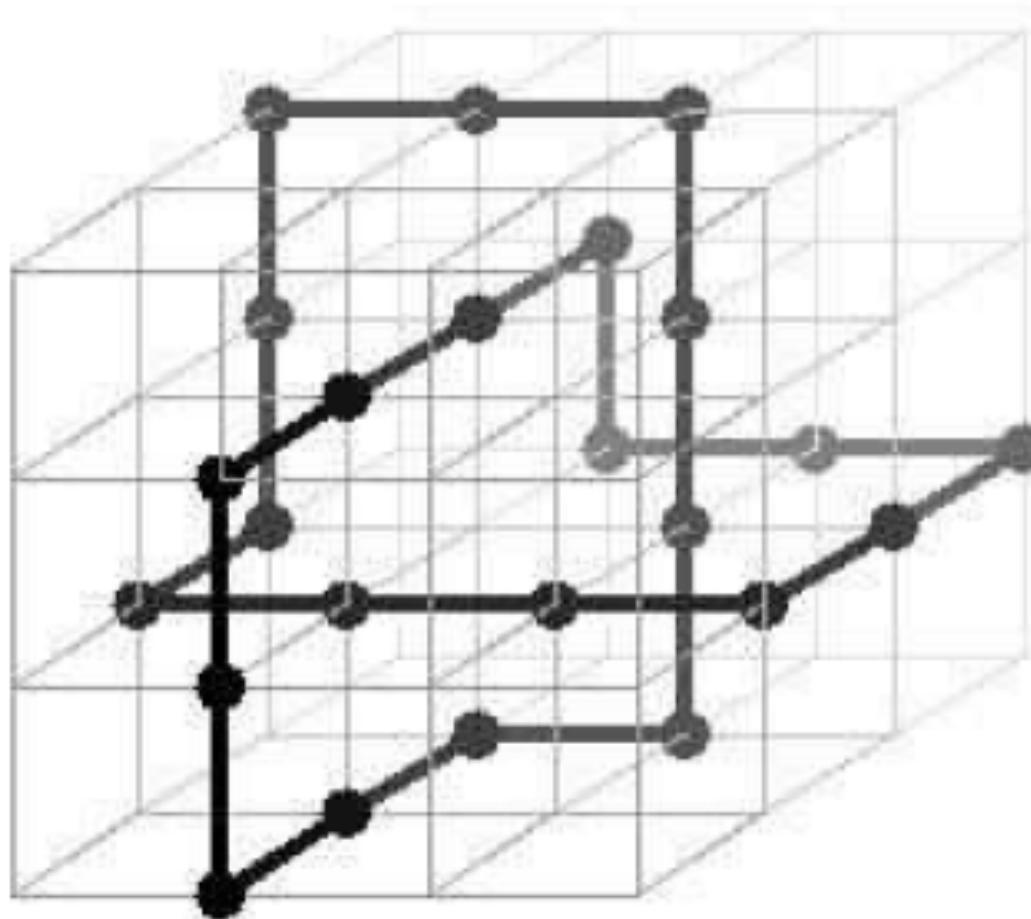
Trefoil knot

Knots in mathematics



Polygonal knot of struts in computer simulation

Knots in mathematics

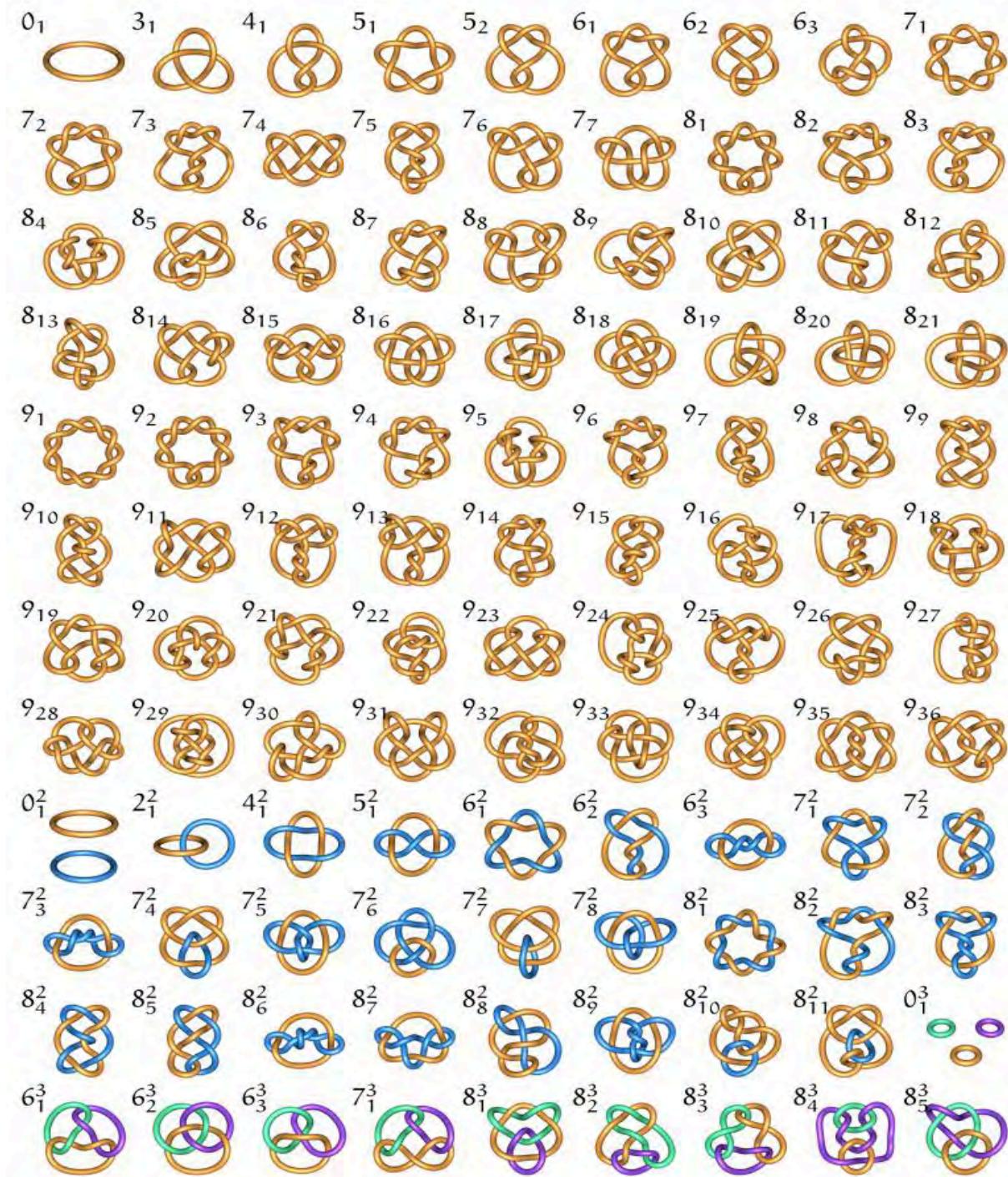


Knot in a cubic lattice

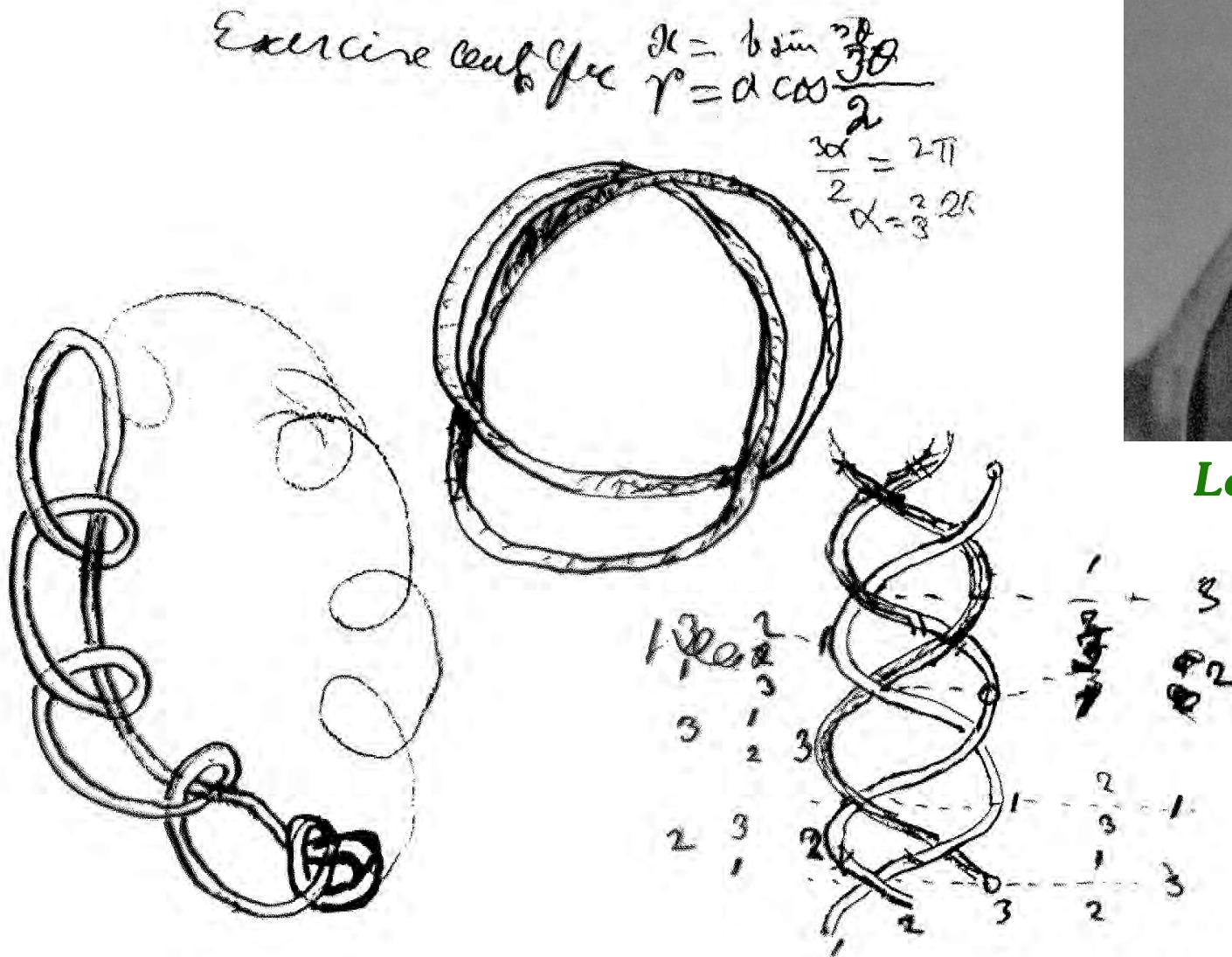
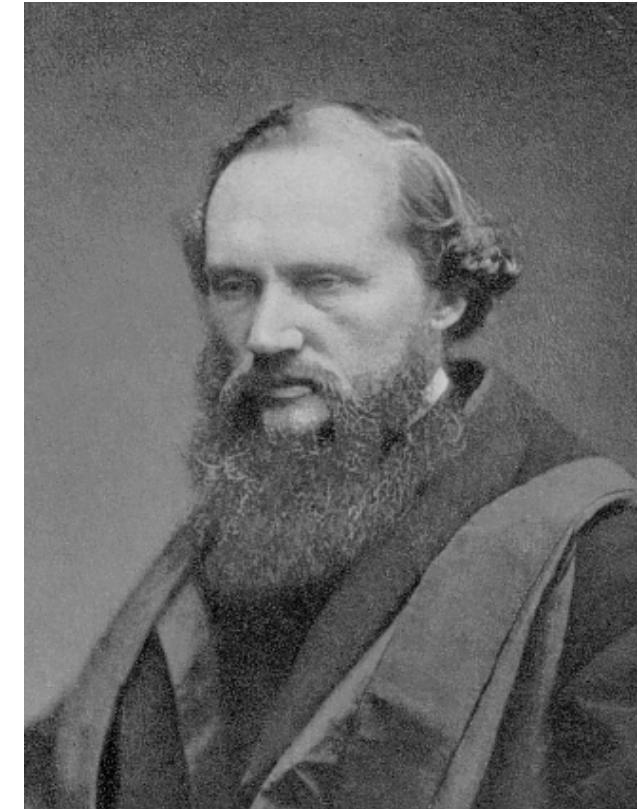
Knots in mathematics

Plato's ideal trefoil knot

Knot table by KnotPlot

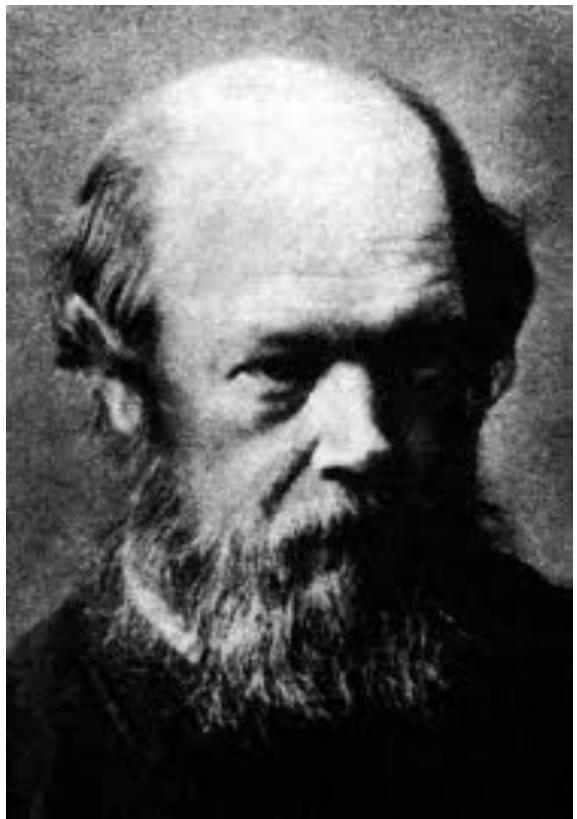


Knots in the vortex atom theory



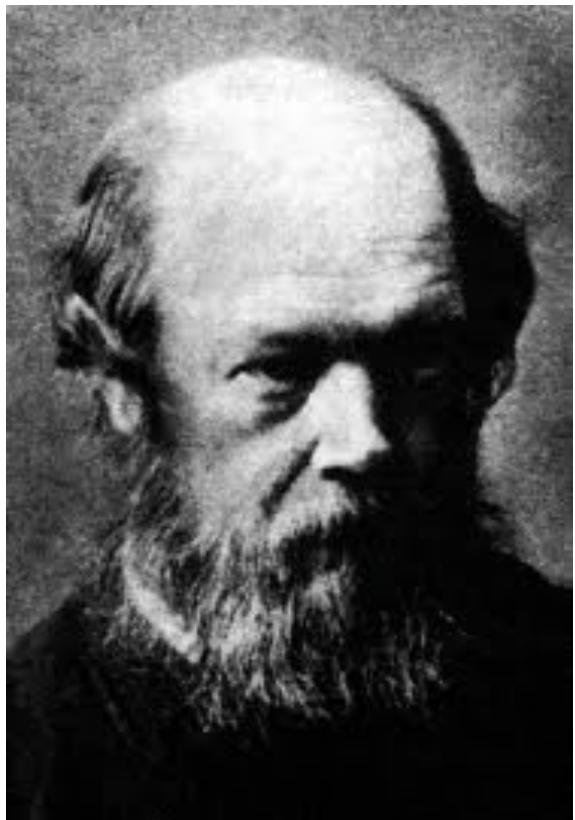
Lord Kelvin (1870)

Knot tabulation

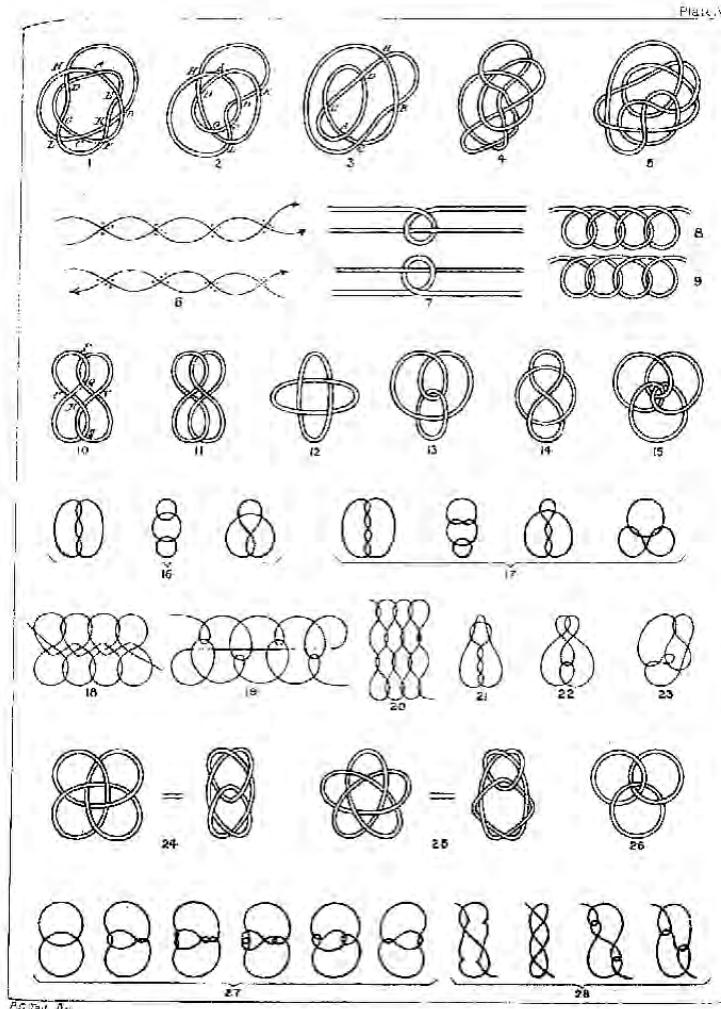


P.G. Tait (1870)

Knot tabulation

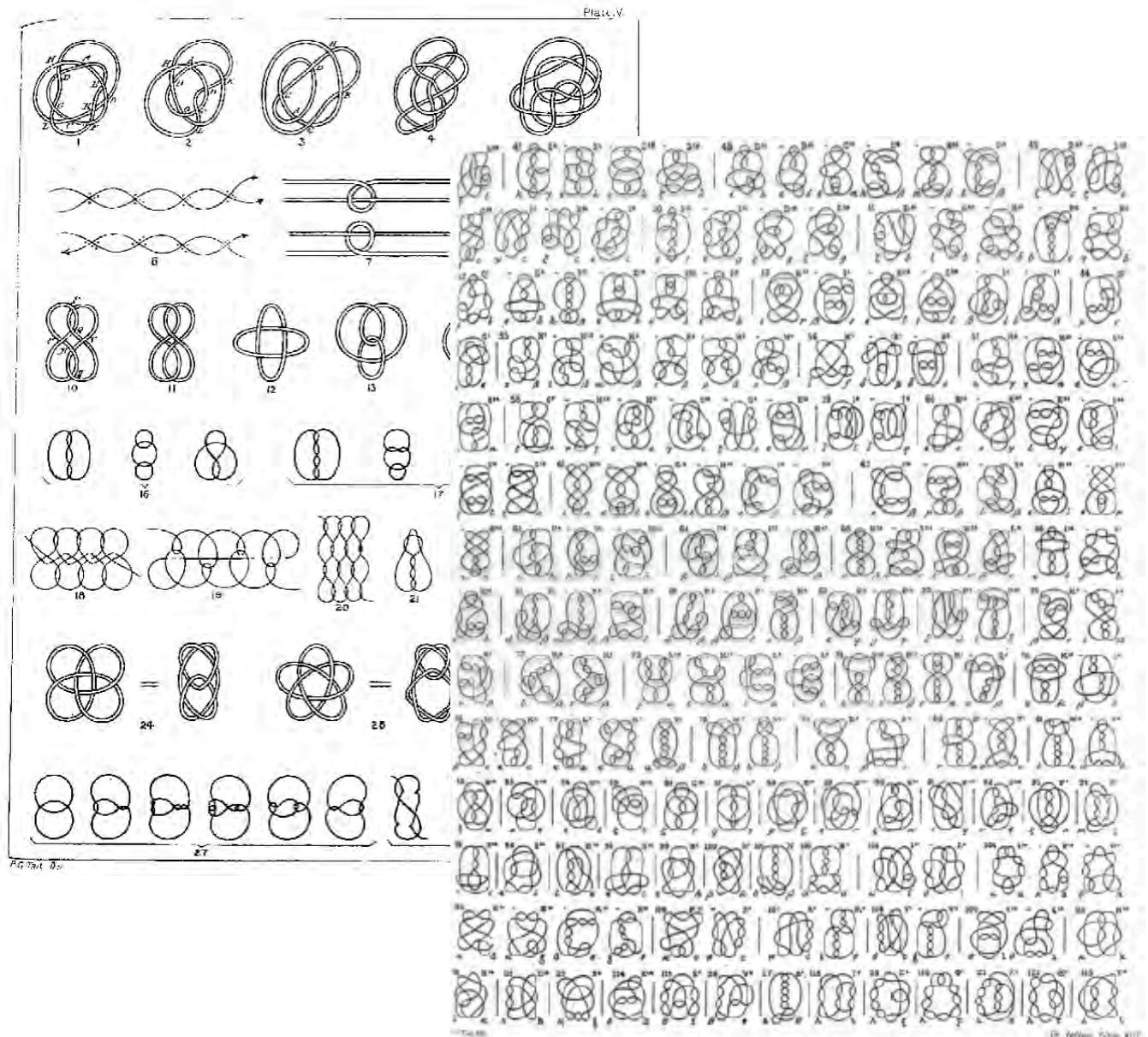


P.G. Tait (1870)



Knot tabulation

P.G. Tait (1870)



First equations

Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie x, y, z ;
der zweiten x', y', z' und

$$\iint \frac{(x'-x)(dydz'-dzdy') + (y'-y)(dzdx'-dxdz') + (z'-z)(dxdy'-dydx')}{[(x'-x)^2 + (y'-y)^2 + (z'-z)^2]^{\frac{3}{2}}} = V$$

dann ist dies Integral durch beide Linien ausgedehnt

$$= 4m\pi$$

und m die Anzahl der Umschlingungen.

Der Werth ist gegenseitig, d. i. er bleibt derselbe, wenn beide Linien gegen einander umgetauscht werden. 1833. Jan. 22.

K.F. Gauss (1833)

First equations

Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie x, y, z ;
der zweiten x', y', z' und

$$\iint \frac{(x'-x)(dydz' - dzdy') + (y'-y)(dzdx' - dxdz') + (z'-z)(dxdy' - dydx')}{[(x'-x)^2 + (y'-y)^2 + (z'-z)^2]^{\frac{3}{2}}} = V$$

dann ist dies Integral durch beide Linien ausgedehnt

$$= 4m\pi$$

und m die Anzahl der Umschlingungen.

Der Werth ist gegenseitig, d. i. er bleibt derselbe, wenn beide Linien gegen einander umgetauscht werden. 1833. Jan. 22.

K.F. Gauss (1833)

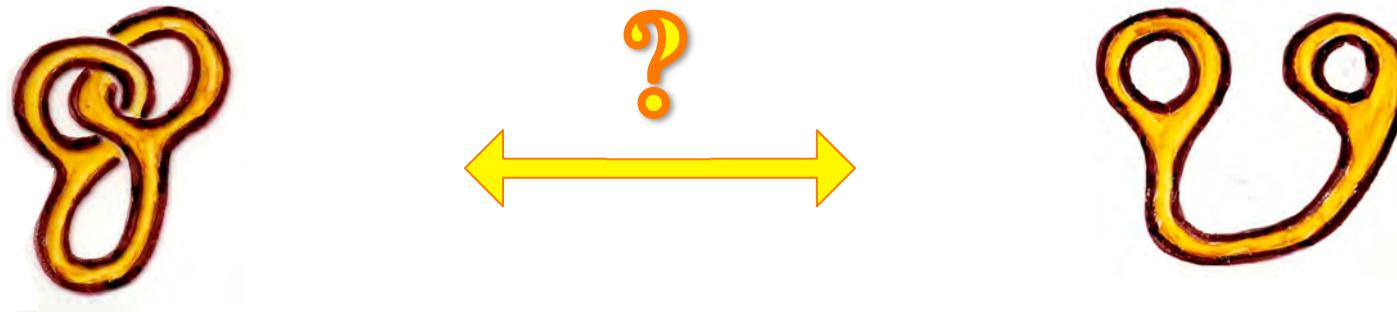
then $\iint \frac{ds \, do}{r^2}$

L	M	N
d	m	n
λ	μ	ν

$$= \iint \frac{ds \, do}{r^2} \left[\left(1 - \frac{dr}{ds}\right) \left(1 - \frac{dr}{do}\right)^2 + \left(r \frac{dr}{ds \, do}\right)^2 \right]^{\frac{1}{2}}$$
$$= 4\pi n$$

J.C. Maxwell (1867)

The concept of topological equivalence and invariants



The concept of topological equivalence and invariants

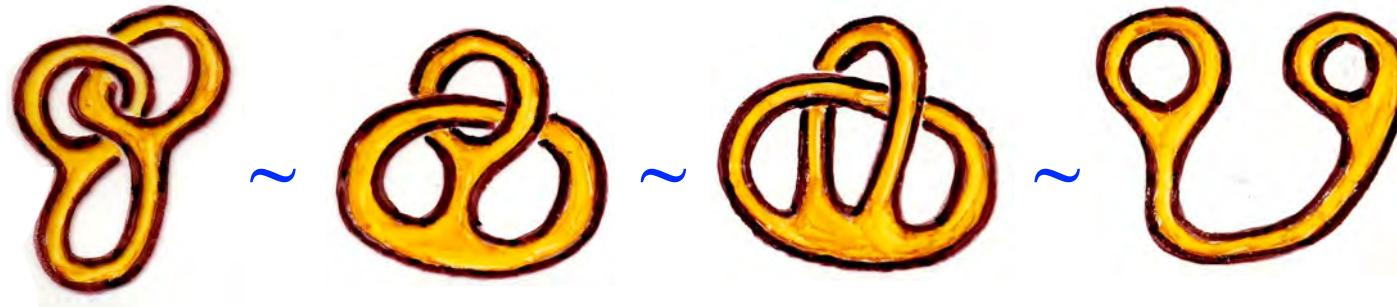
- *Re-arrangement of internal structure*

The concept of topological equivalence and invariants

- Re-arrangement of internal structure

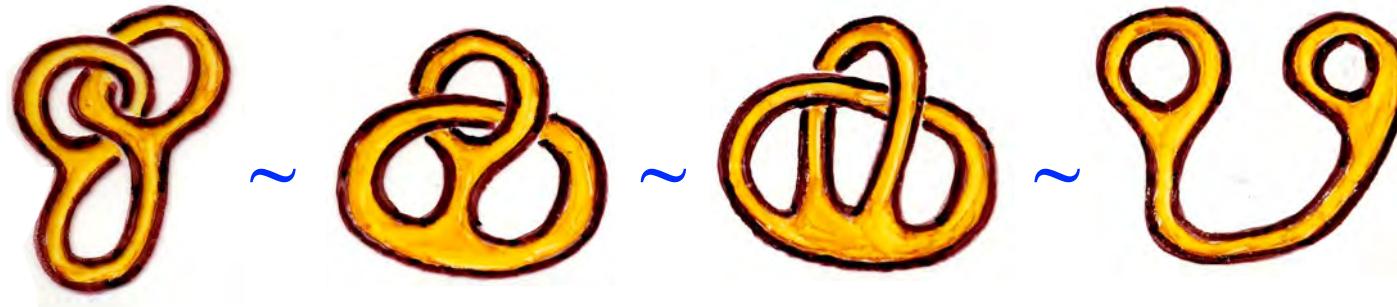
The concept of topological equivalence and invariants

- *Re-arrangement of internal structure*



The concept of topological equivalence and invariants

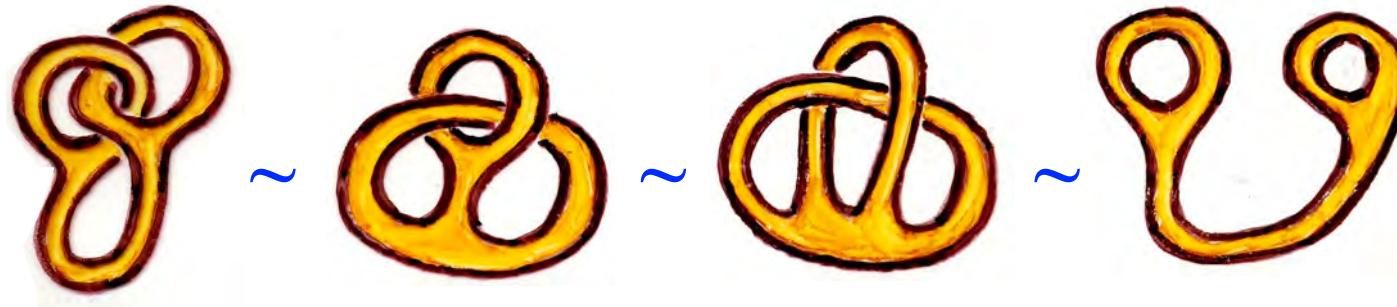
- Re-arrangement of internal structure



- Linked pretzel

The concept of topological equivalence and invariants

- Re-arrangement of internal structure

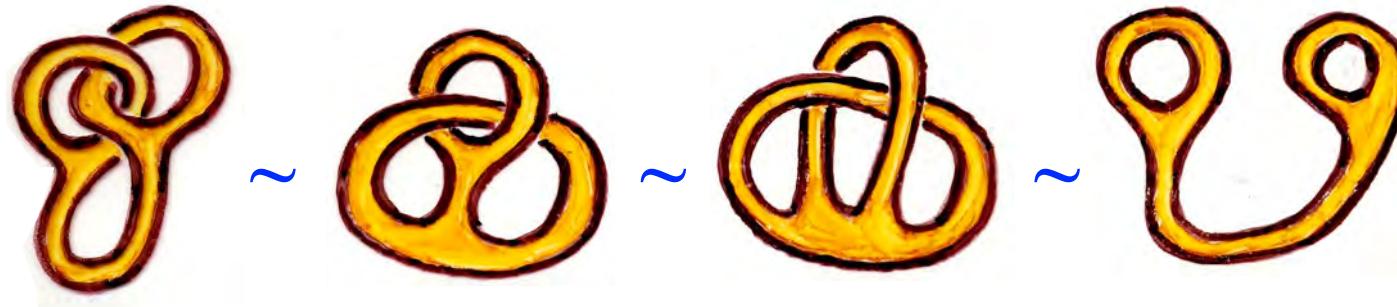


- Linked pretzel

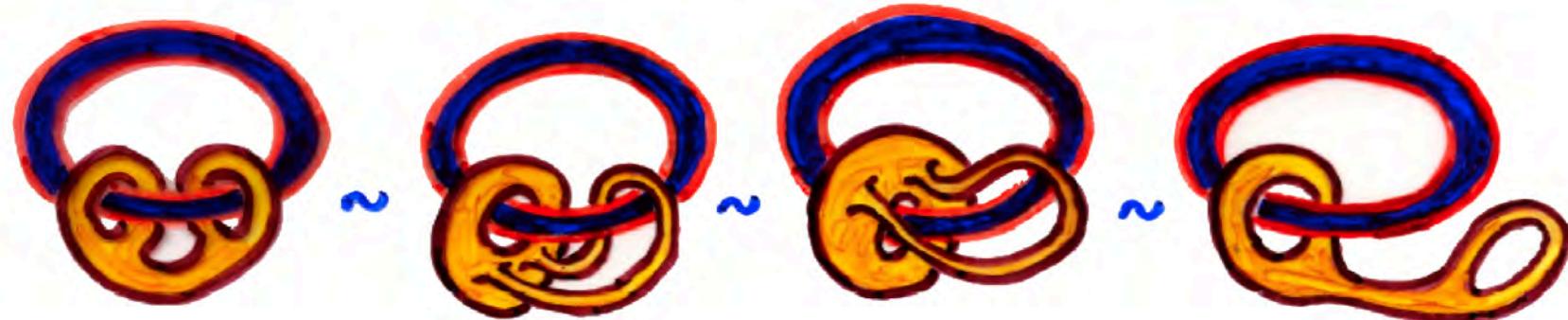


The concept of topological equivalence and invariants

- Re-arrangement of internal structure

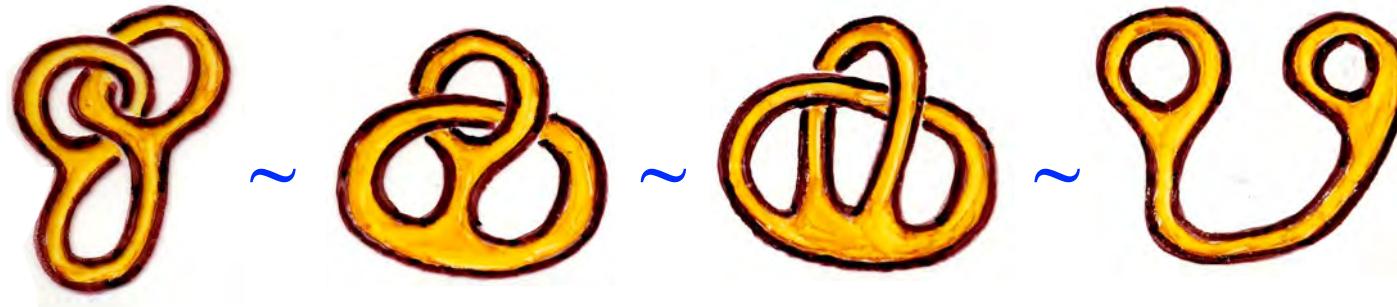


- Linked pretzel



The concept of topological equivalence and invariants

- *Re-arrangement of internal structure*

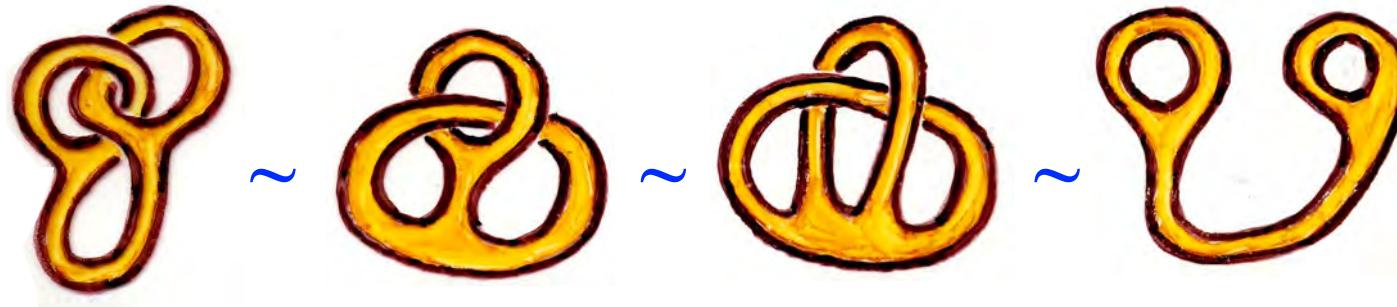


- *Linked pretzel*

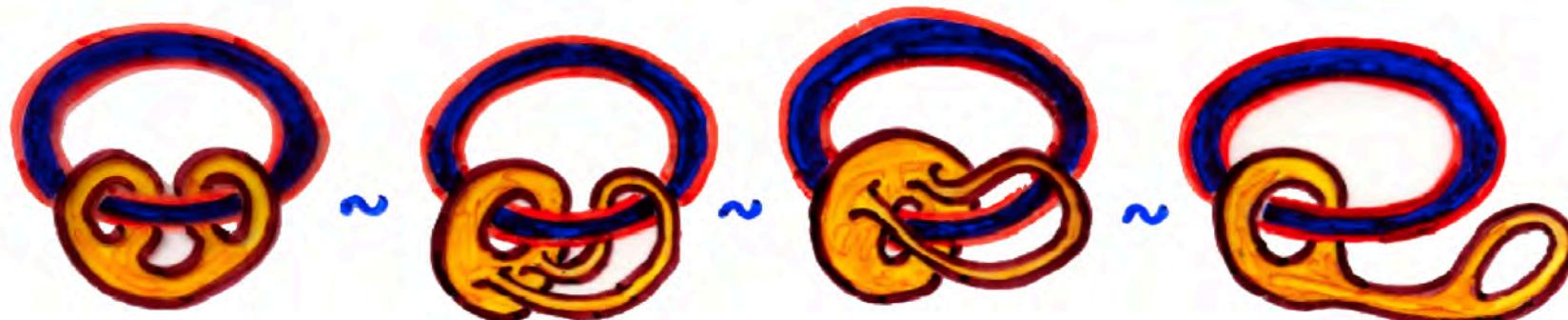
- *Knotted pretzel*

The concept of topological equivalence and invariants

- Re-arrangement of internal structure



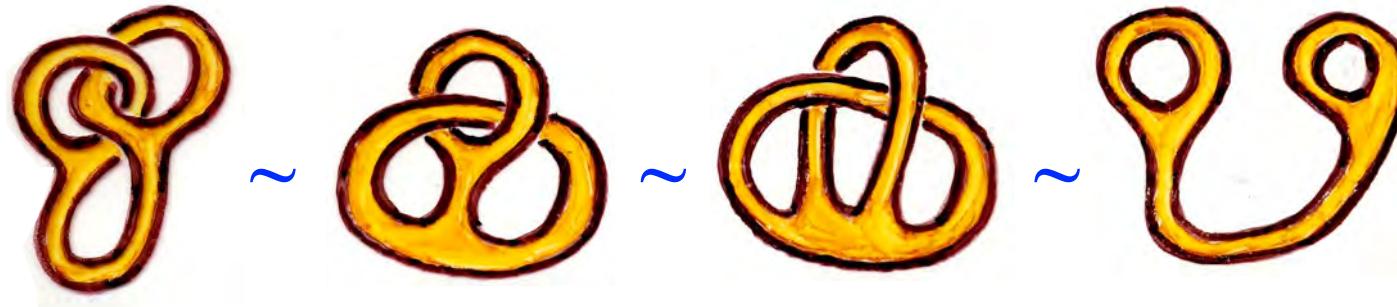
- Linked pretzel



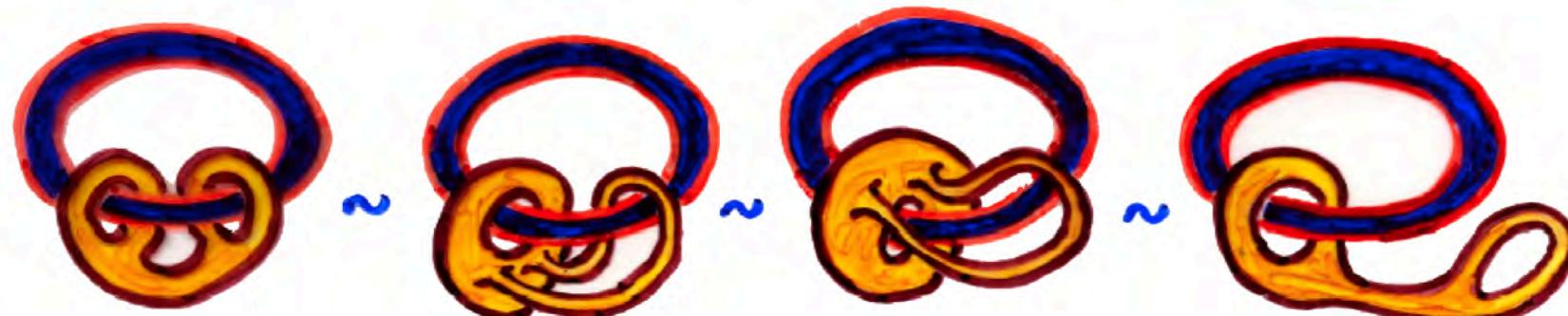
- Knotted pretzel

The concept of topological equivalence and invariants

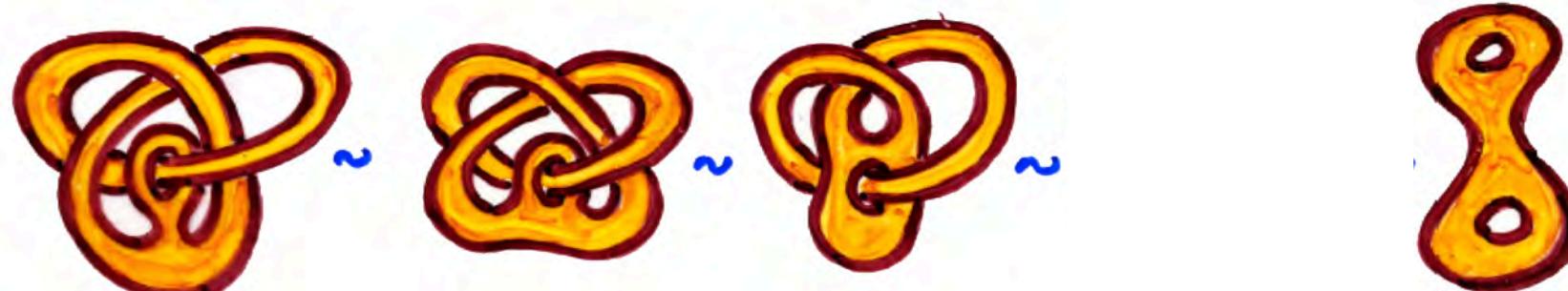
- Re-arrangement of internal structure



- Linked pretzel



- Knotted pretzel

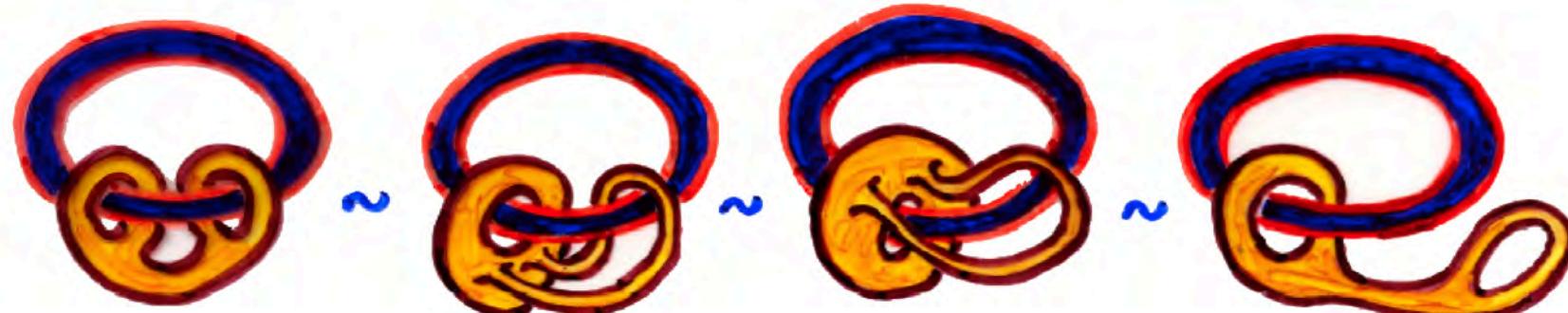


The concept of topological equivalence and invariants

- *Re-arrangement of internal structure*



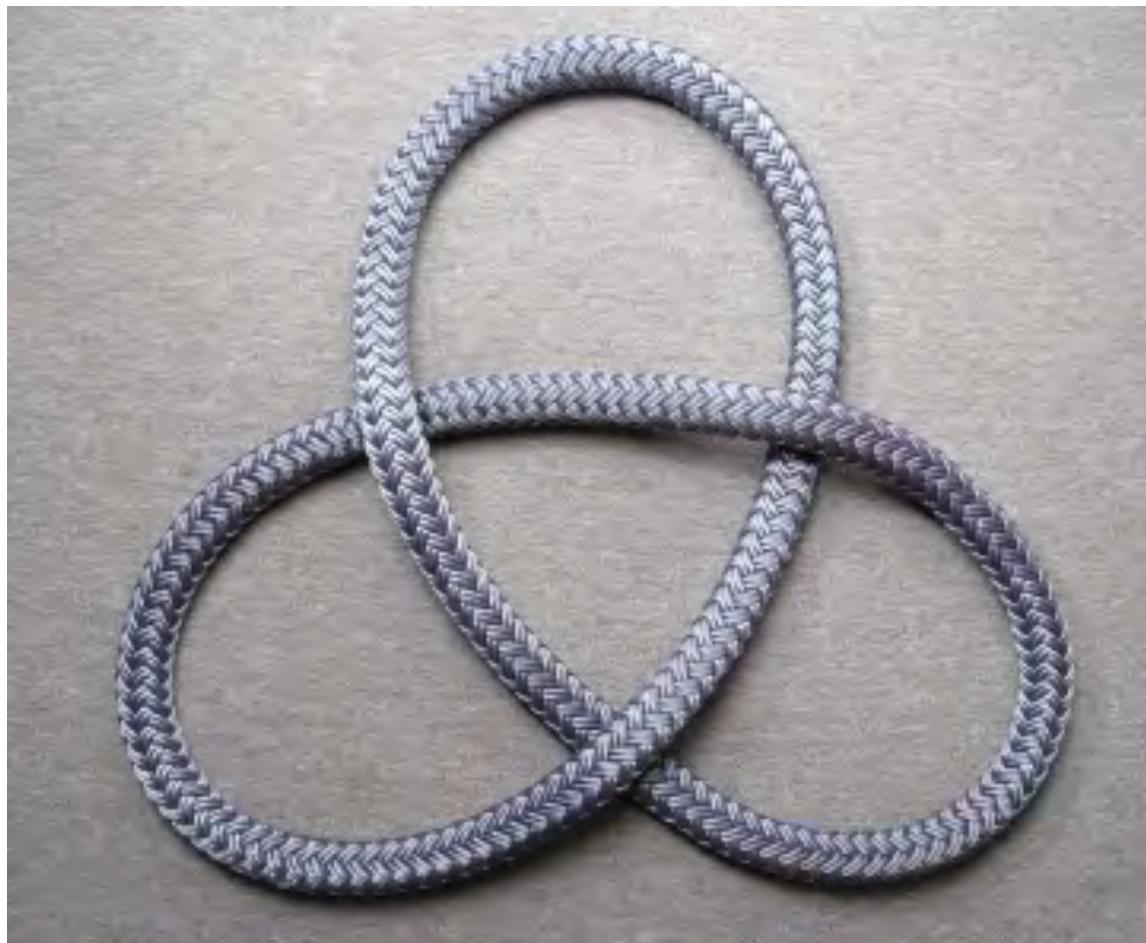
- *Linked pretzel*



- *Knotted pretzel*



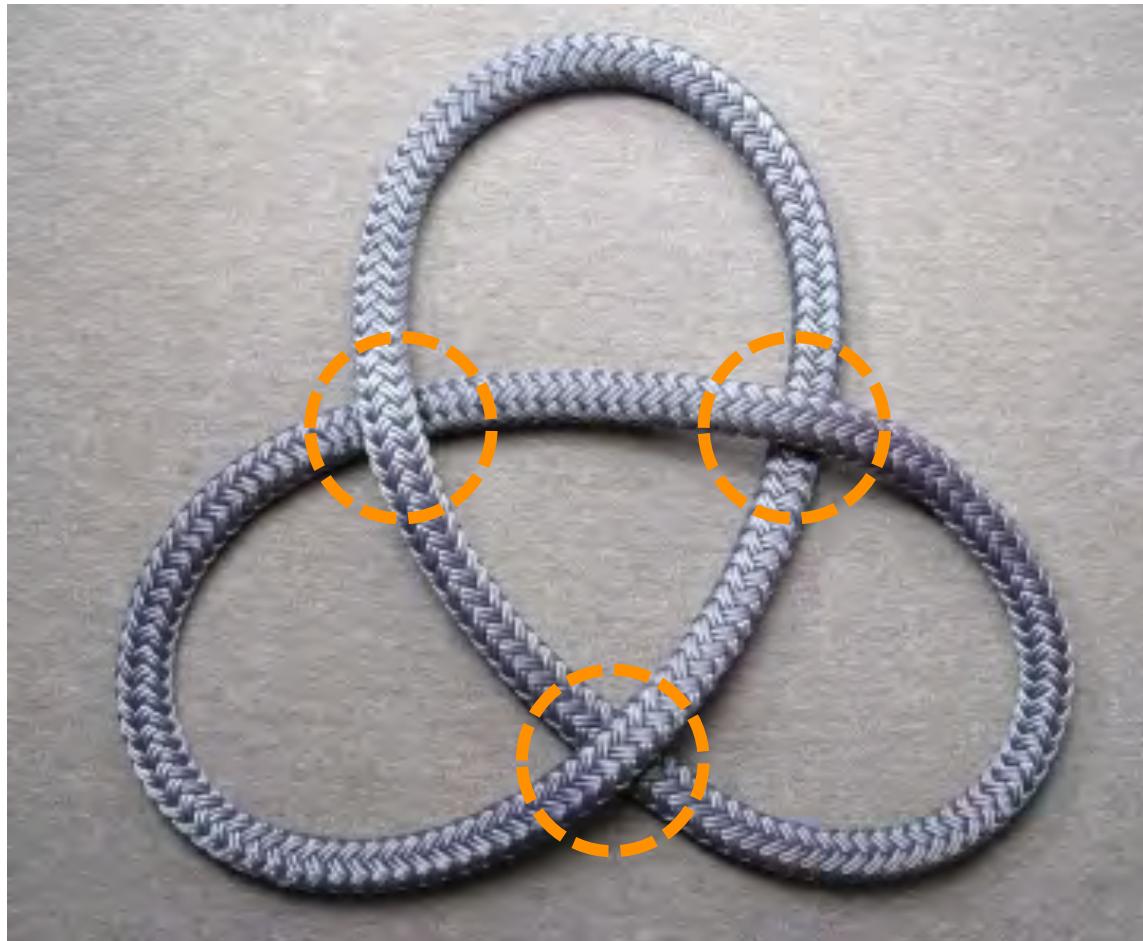
What to study on knots?



Trefoil knot

What to study on knots?

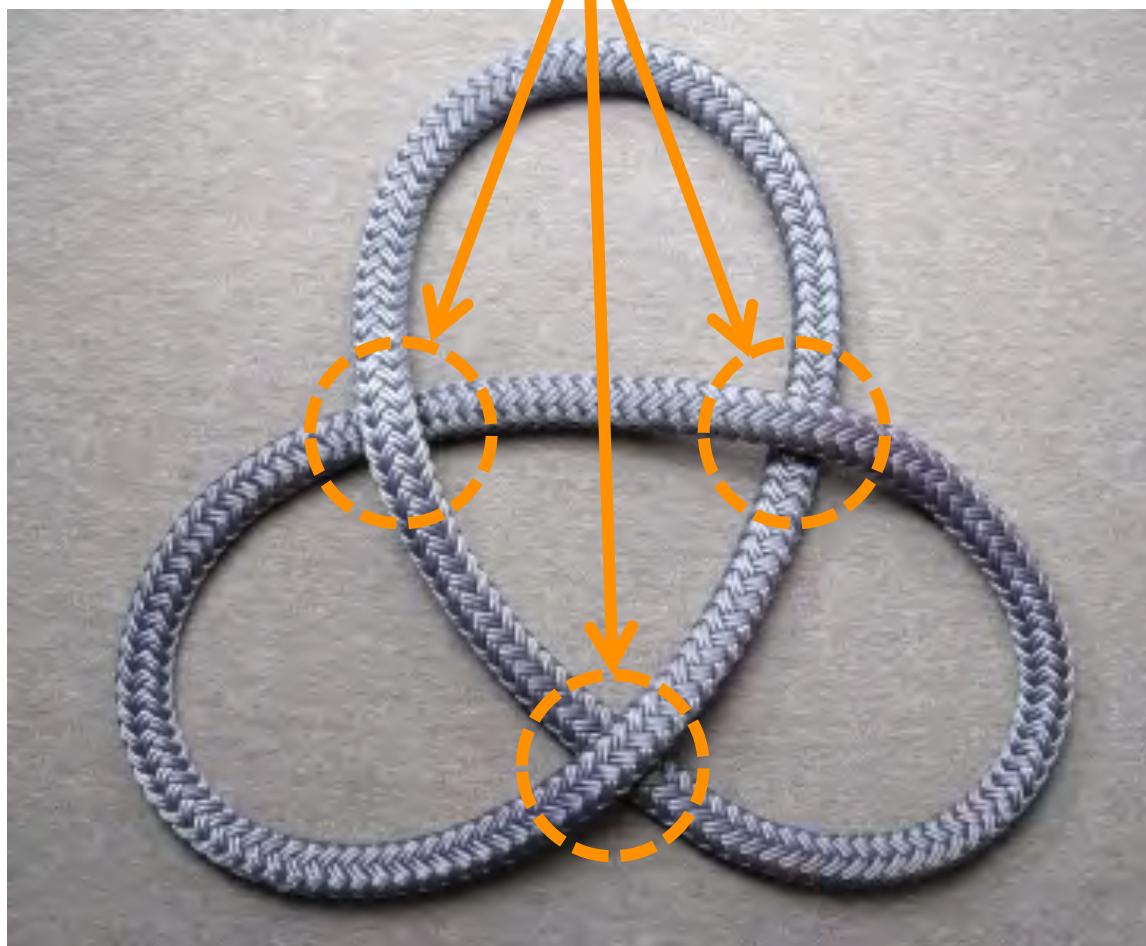
- **Minimum number of crossings:** $c_{\min} = \min(\#)$



Trefoil knot

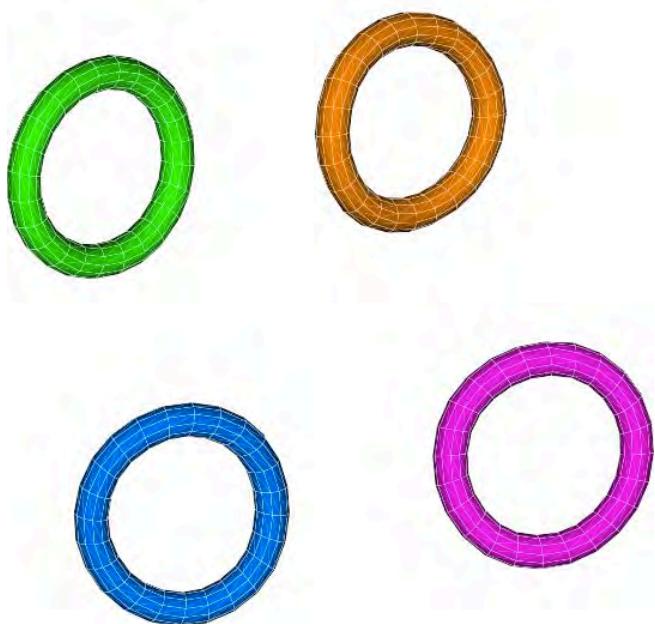
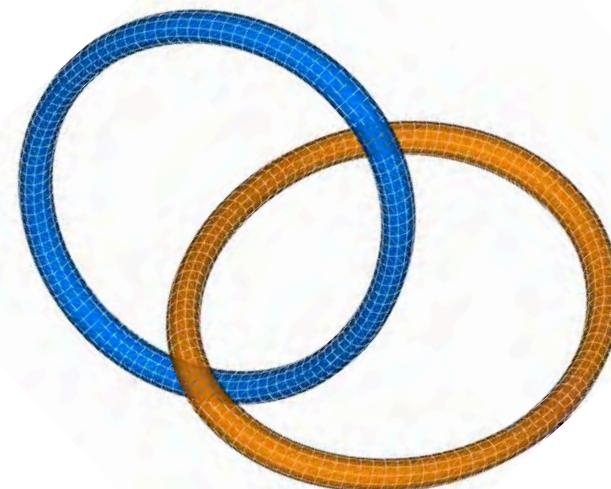
What to study on knots?

- **Minimum number of crossings:** $c_{\min} = 3$



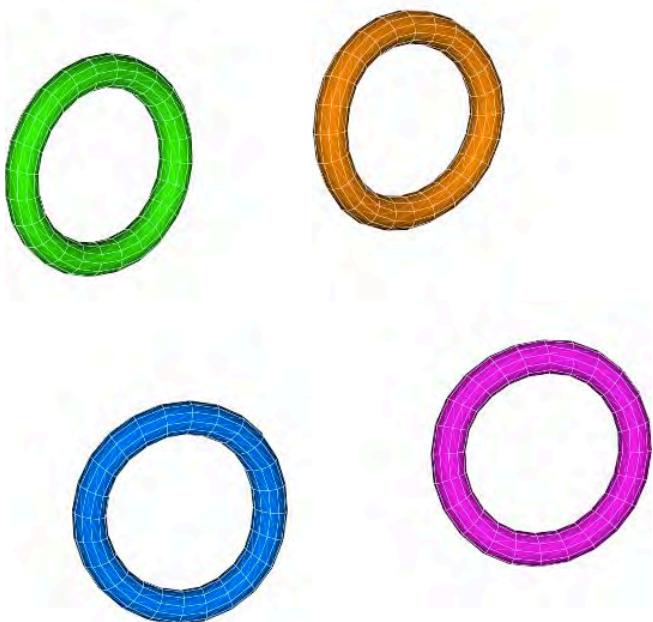
Trefoil knot

What to study on links?

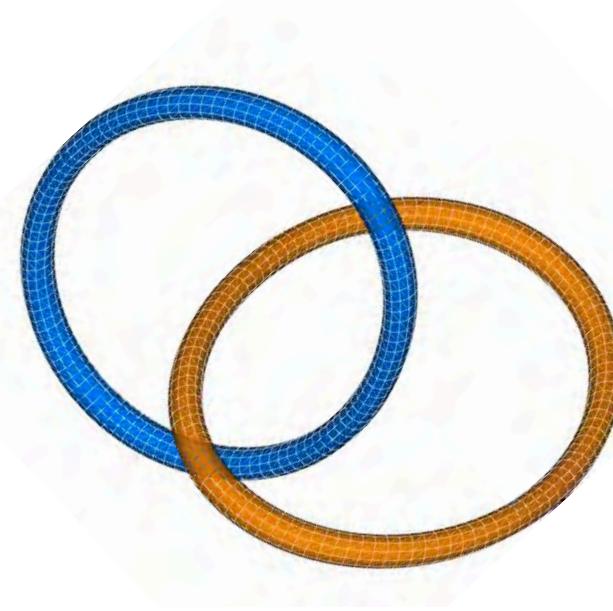


What to study on links?

- **Number of components:** N



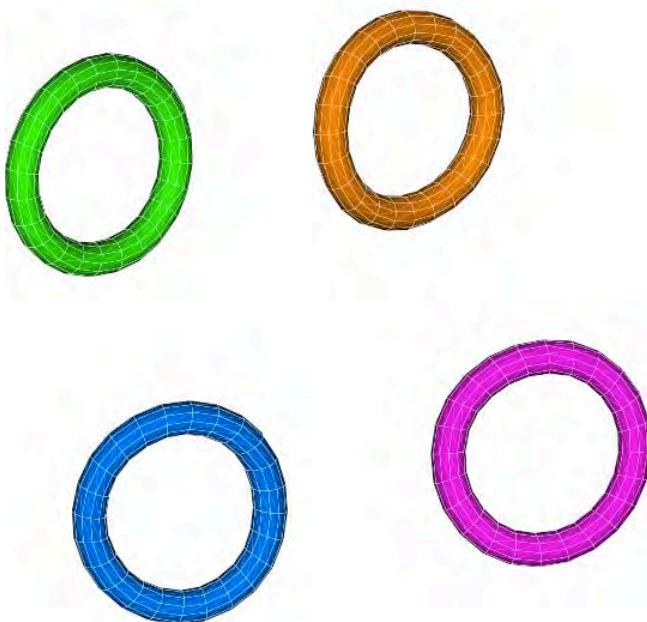
$$N = 4$$



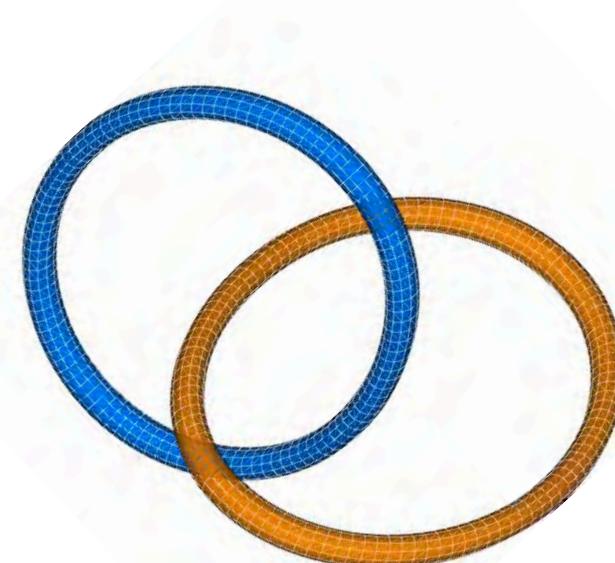
$$N = 2$$

What to study on links?

- **Number of components:** N
- **Minimum number of crossings:** $c_{\min} = \min(\#)$



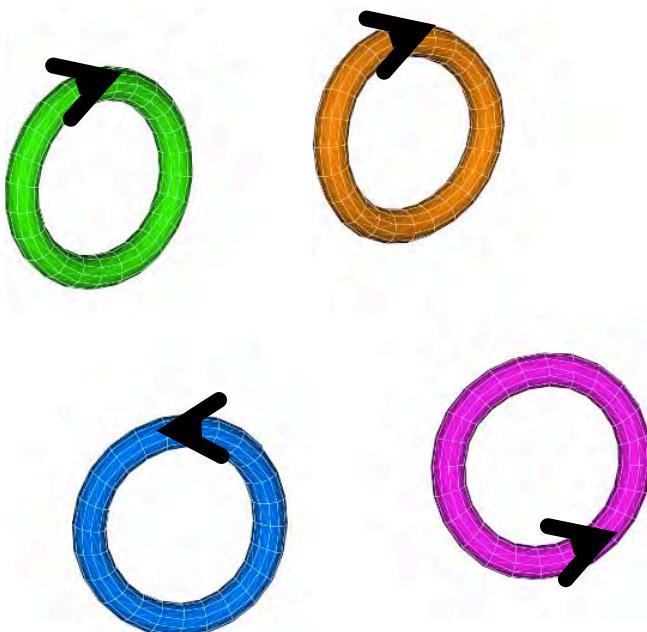
$$N = 4, \quad c_{\min} = 0$$



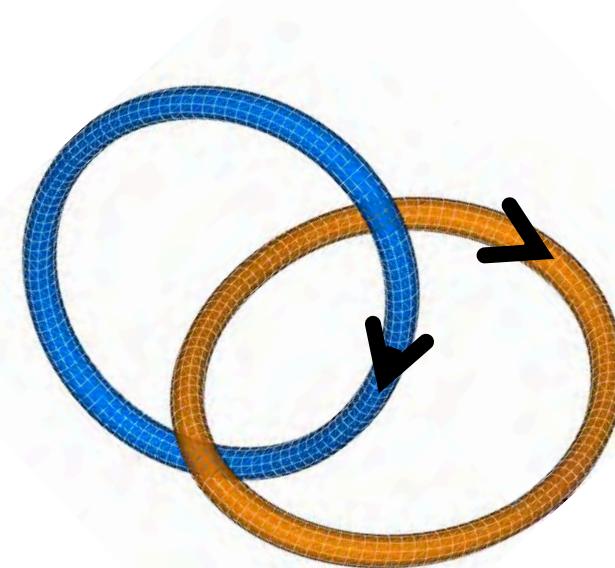
$$N = 2, \quad c_{\min} = 2$$

What to study on links?

- **Number of components:** N
- **Minimum number of crossings:** $c_{\min} = \min(\#)$



$$N = 4, \quad c_{\min} = 0$$

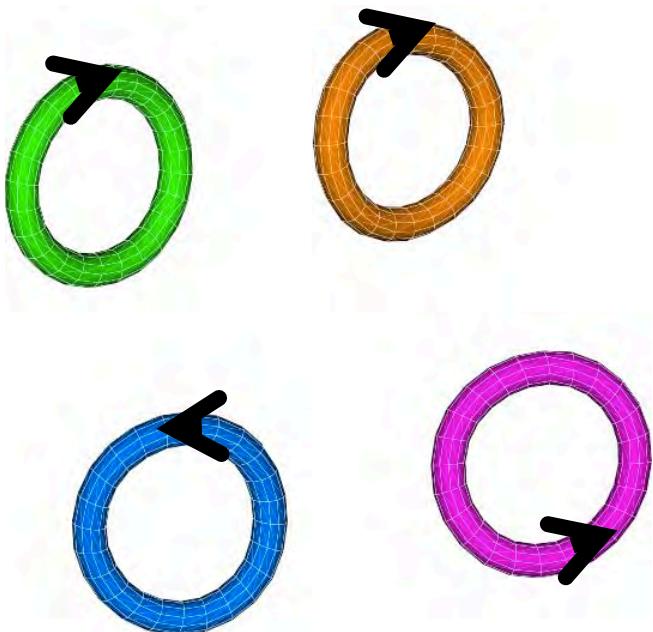
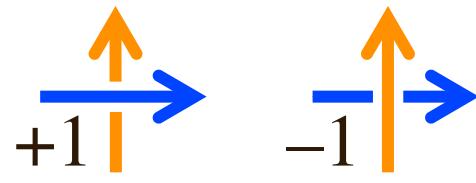


$$N = 2, \quad c_{\min} = 2$$

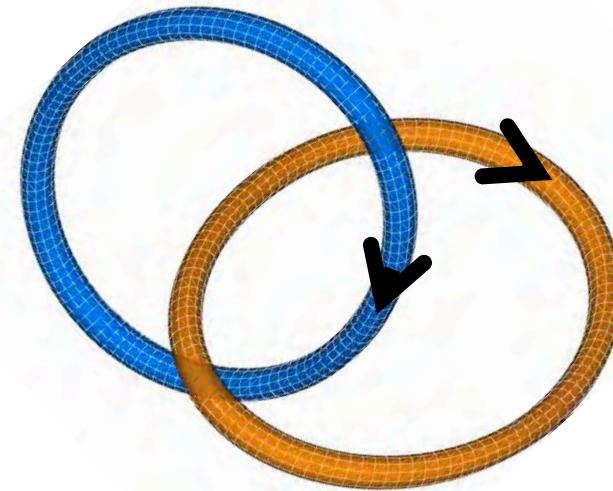
What to study on links?

- **Number of components:** N
- **Minimum number of crossings:** $c_{\min} = \min(\#)$

- **(Gauss) linking number between components:** $Lk = \frac{1}{2} \sum_r \varepsilon_r$



$$\varepsilon_r = \pm 1$$



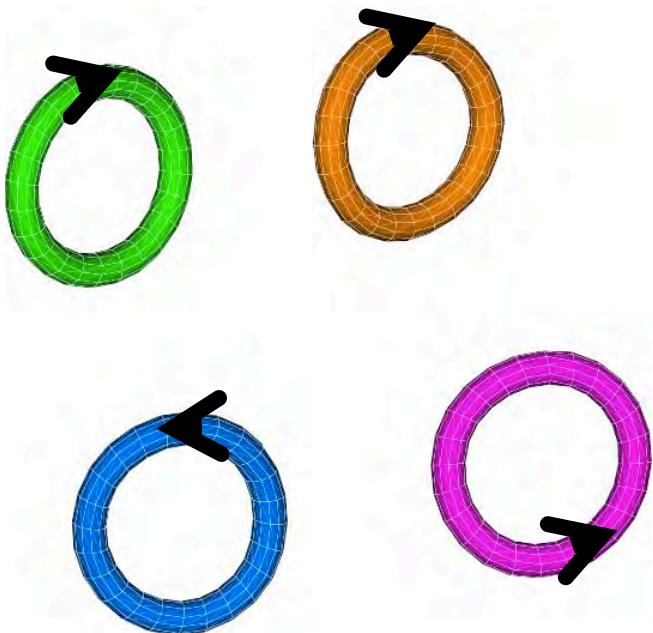
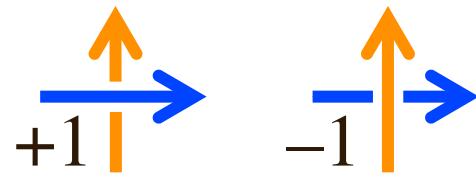
$$N = 4, c_{\min} = 0$$

$$N = 2, c_{\min} = 2$$

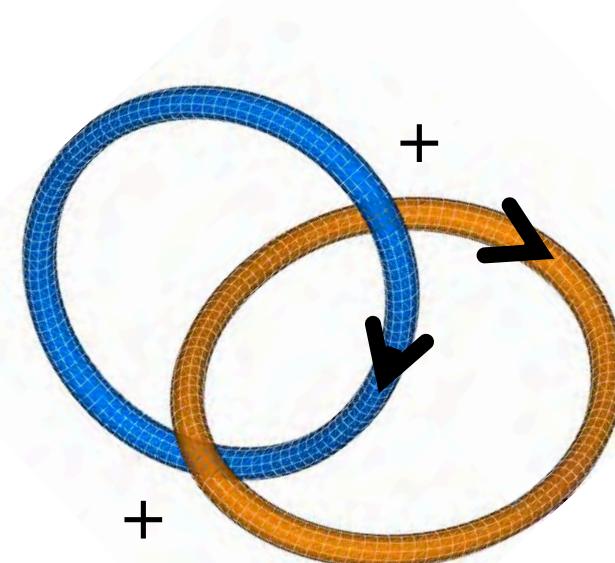
What to study on links?

- **Number of components:** N
- **Minimum number of crossings:** $c_{\min} = \min(\#)$

- **(Gauss) linking number between components:** $Lk = \frac{1}{2} \sum_r \varepsilon_r$



$$\varepsilon_r = \pm 1$$



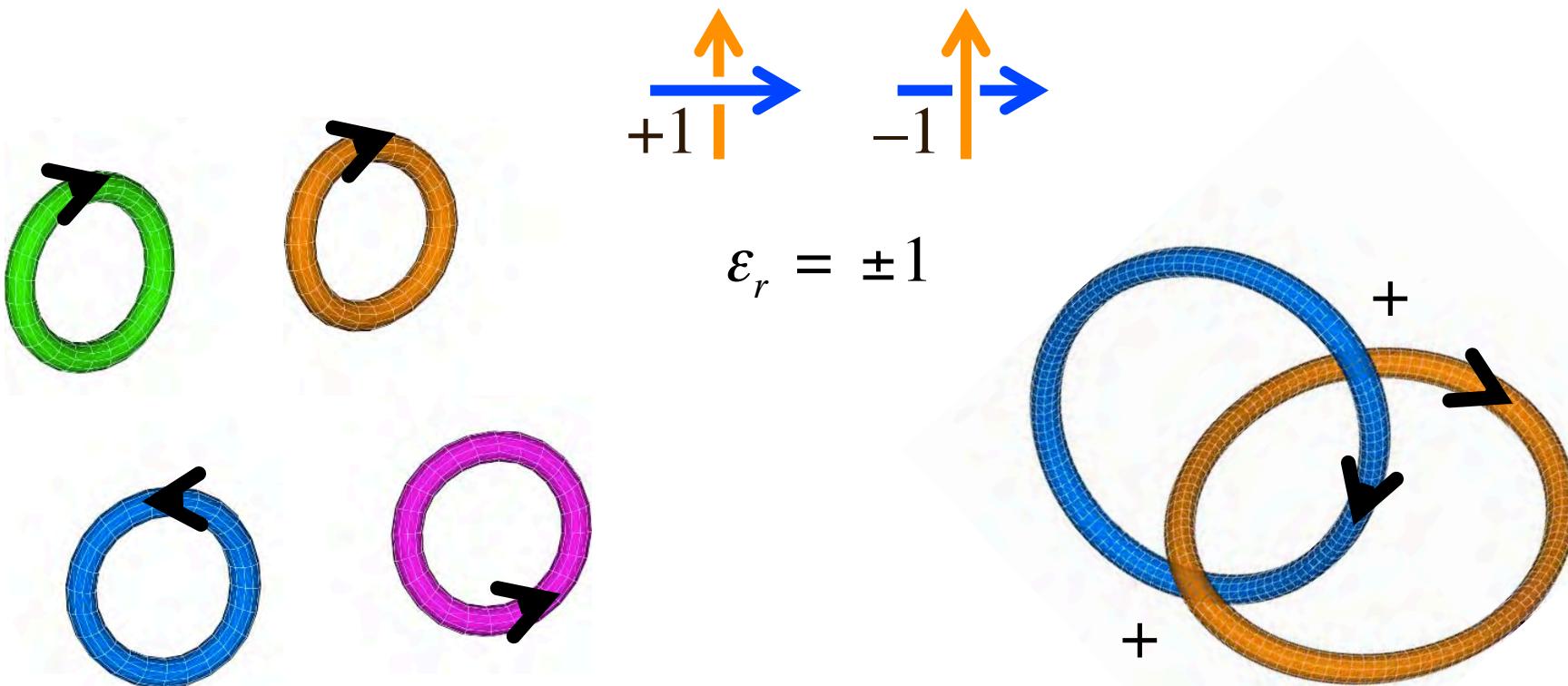
$$N = 4, c_{\min} = 0$$

$$N = 2, c_{\min} = 2$$

What to study on links?

- **Number of components:** N
- **Minimum number of crossings:** $c_{\min} = \min(\#)$

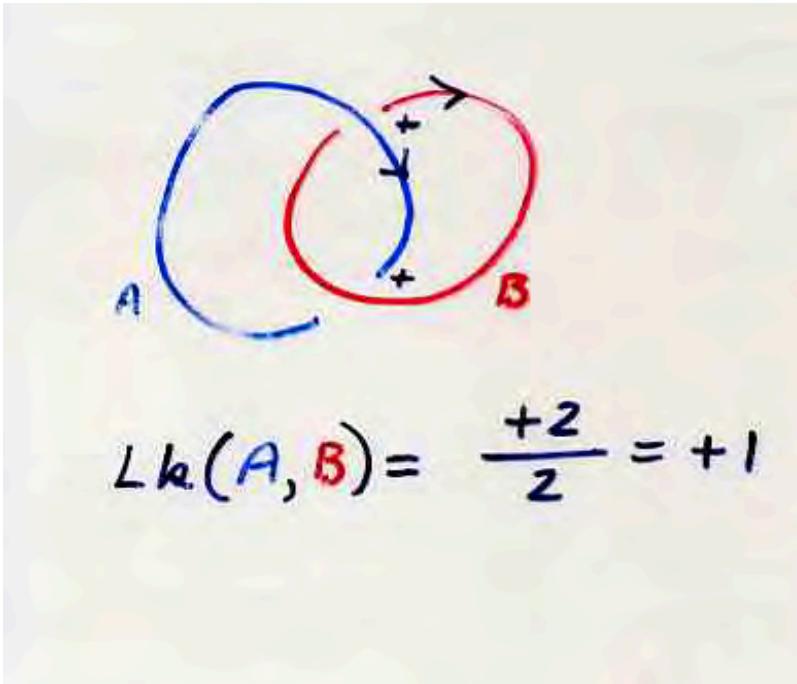
- **(Gauss) linking number between components:** $Lk = \frac{1}{2} \sum_r \varepsilon_r$



$$N=4, \ c_{\min}=0, \ Lk=0$$

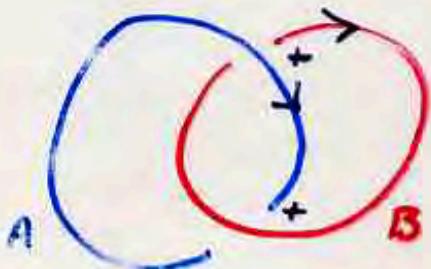
$$N=2, \ c_{\min}=2, \ Lk=+1$$

Computations by hand: some examples

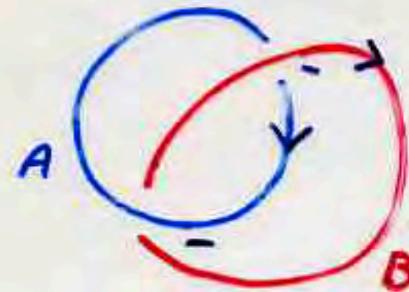


$$Lk(A, B) = \frac{+2}{2} = +1$$

Computations by hand: some examples

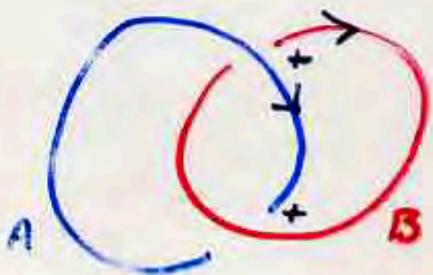


$$Lk(A, B) = \frac{+2}{2} = +1$$

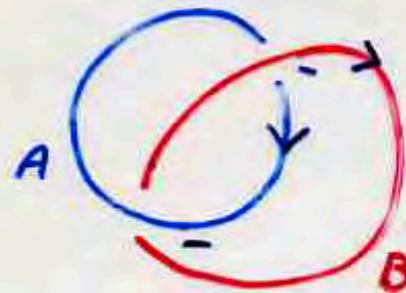


$$Lk(A, B) = \frac{-2}{2} = -1$$

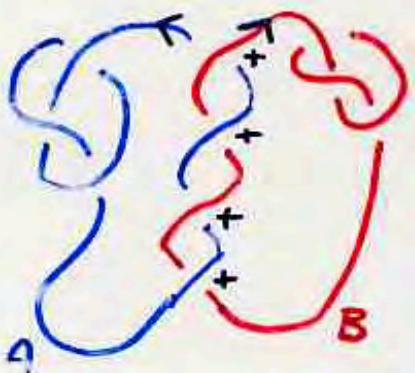
Computations by hand: some examples



$$Lk(A, B) = \frac{+2}{2} = +1$$

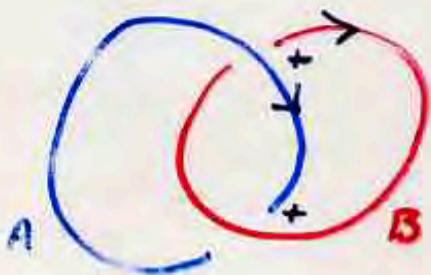


$$Lk(A, B) = \frac{-2}{2} = -1$$

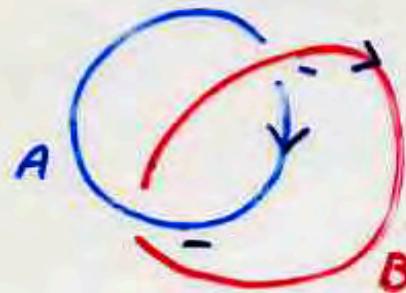


$$Lk(A, B) = \frac{+4}{2} = +2$$

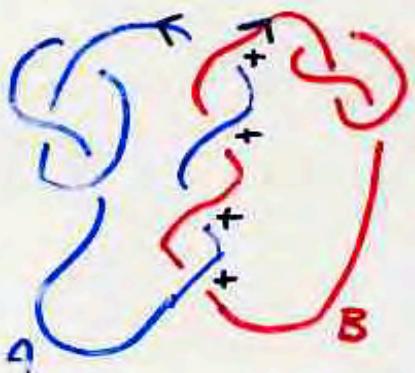
Computations by hand: some examples



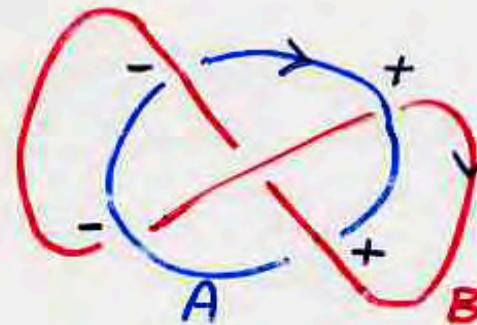
$$Lk(A, B) = \frac{+2}{2} = +1$$



$$Lk(A, B) = \frac{-2}{2} = -1$$

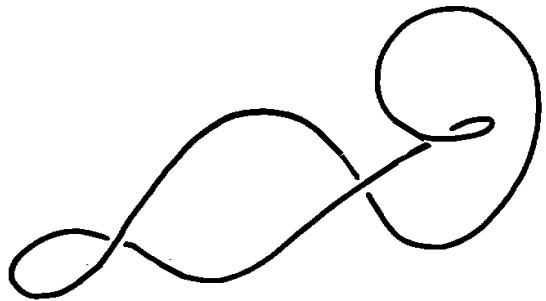


$$Lk(A, B) = \frac{+4}{2} = +2$$

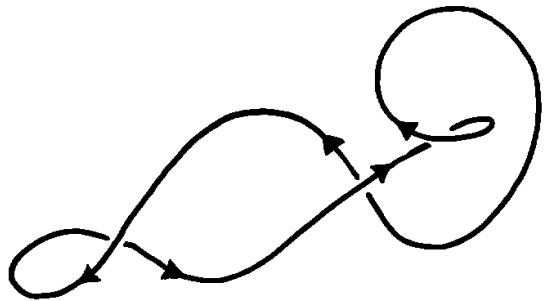


$$Lk(A, B) = \frac{0}{2} = 0$$

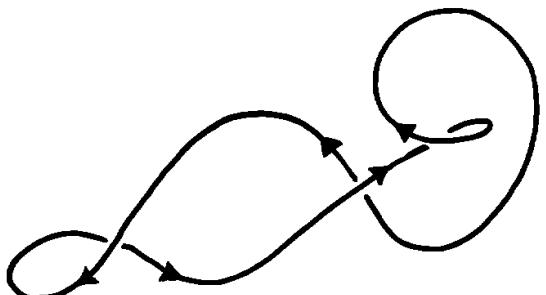
Indented diagram and signed crossings



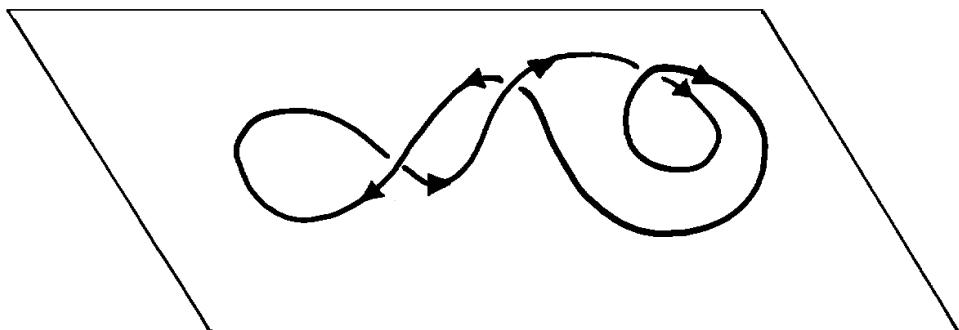
Indented diagram and signed crossings



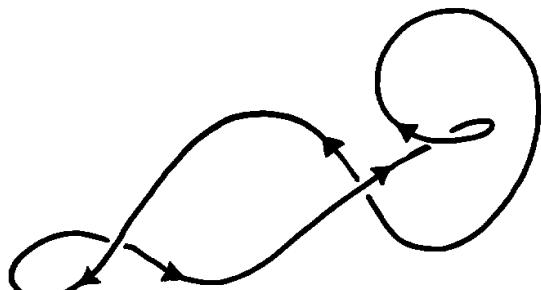
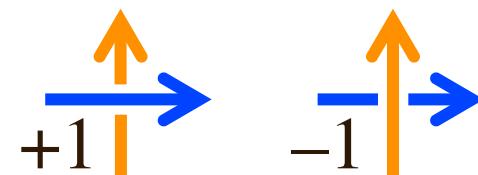
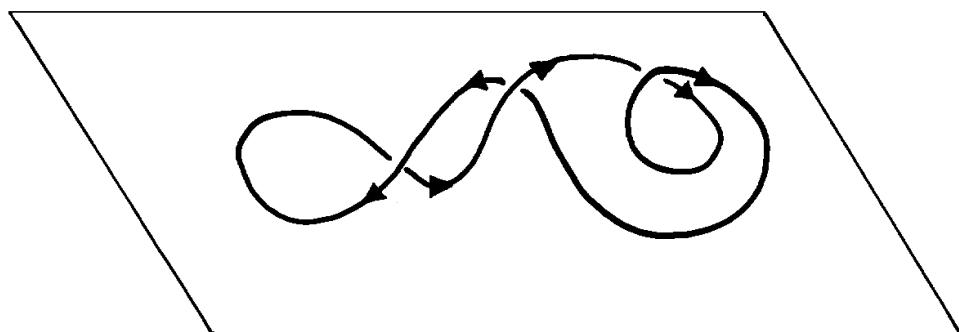
Indented diagram and signed crossings



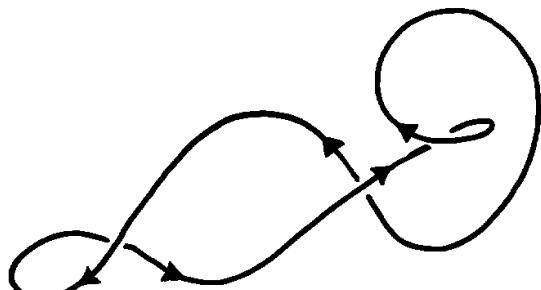
v



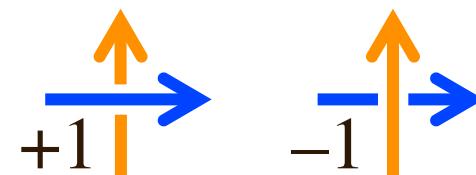
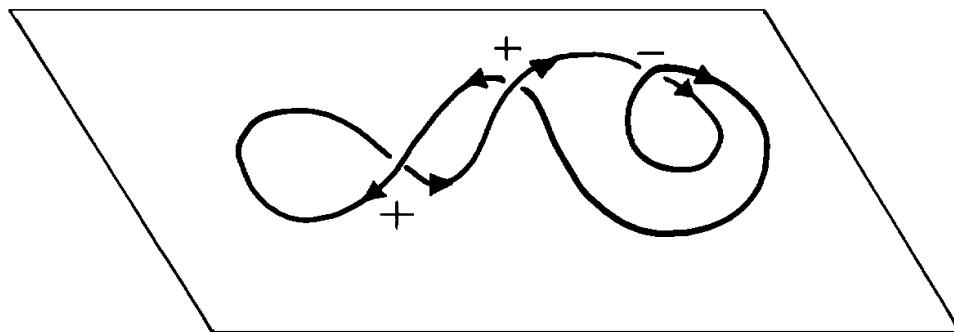
Indented diagram and signed crossings



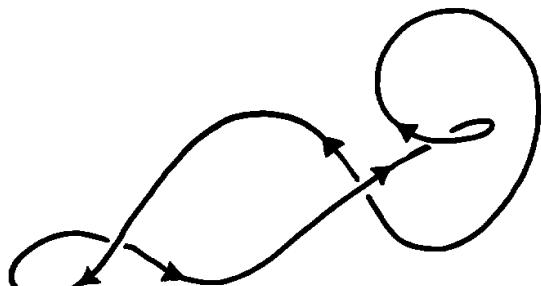
Indented diagram and signed crossings



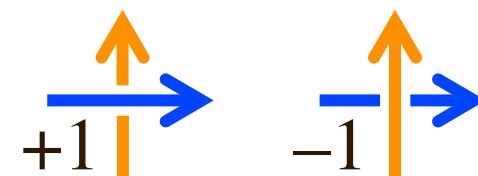
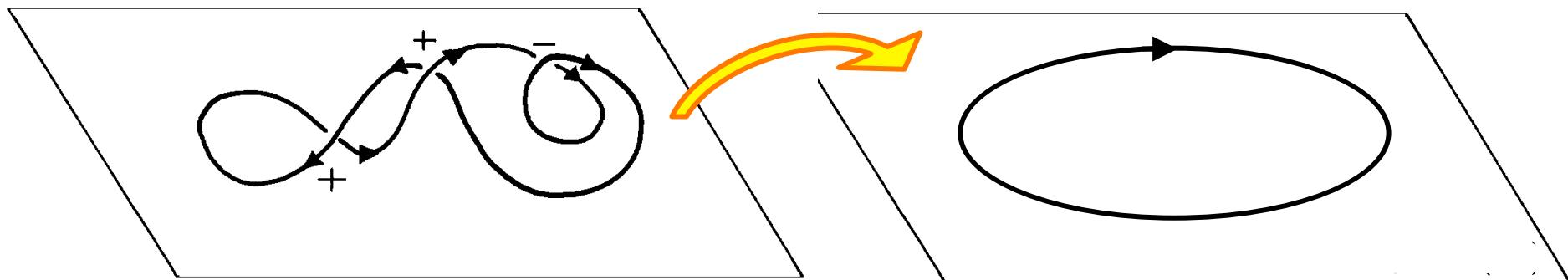
ν



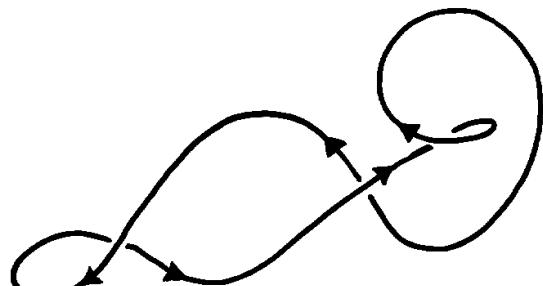
Indented diagram and signed crossings



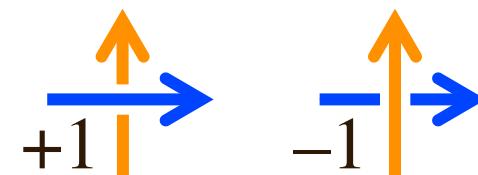
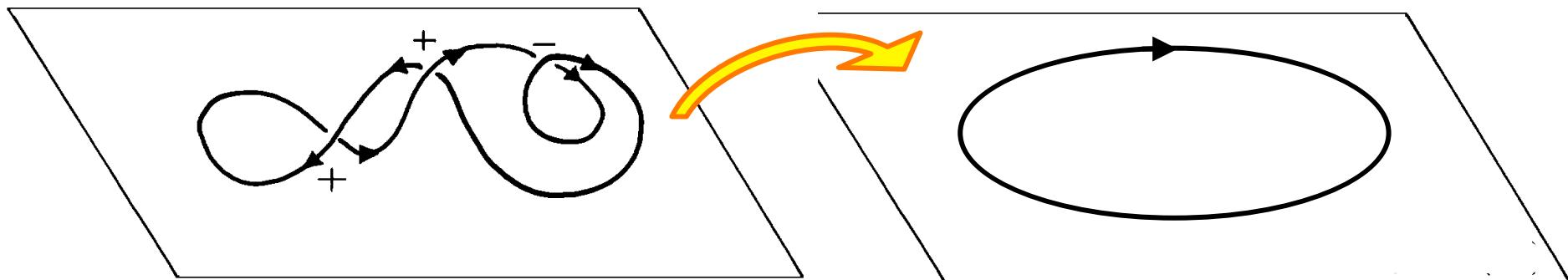
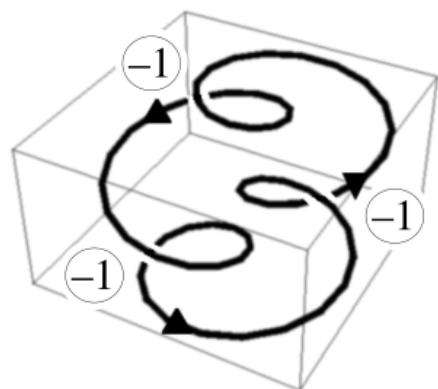
v



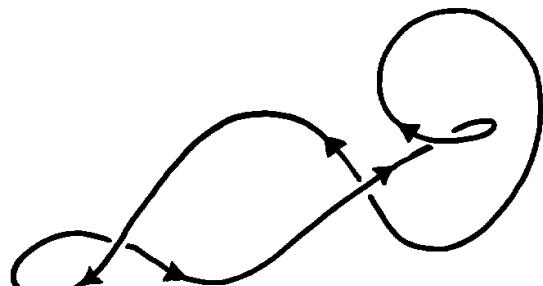
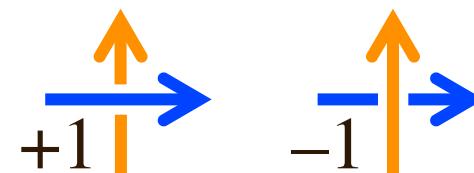
Indented diagram and signed crossings



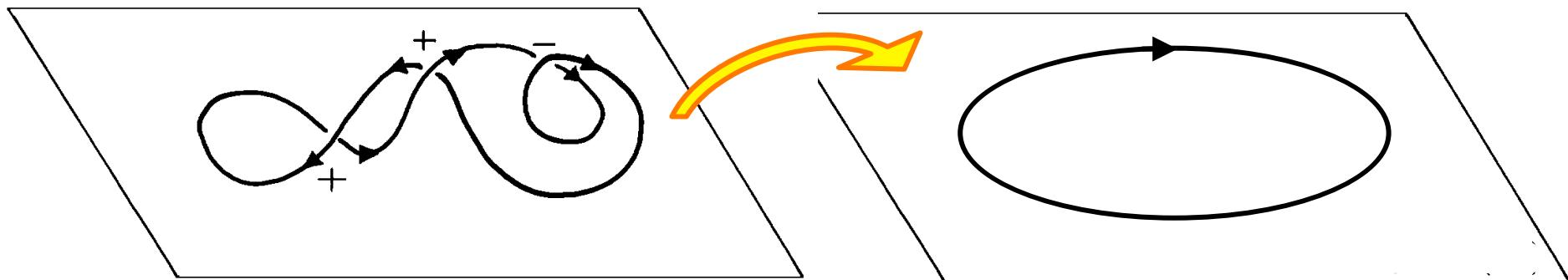
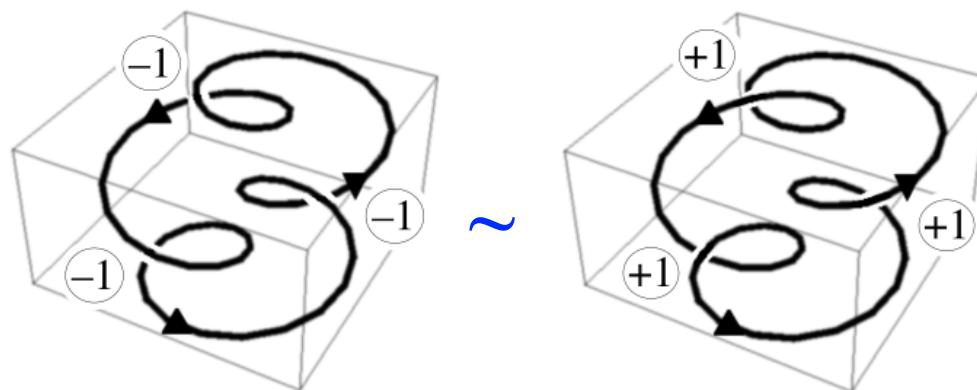
ν



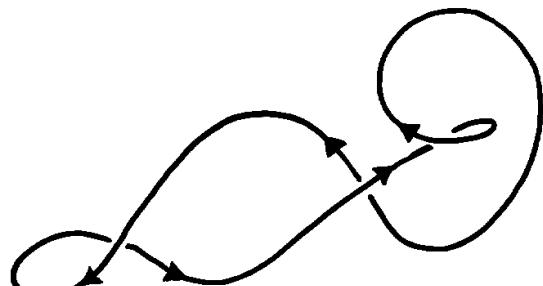
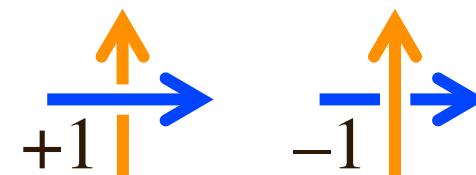
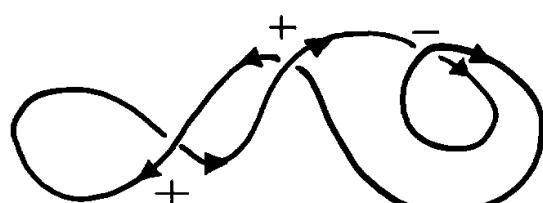
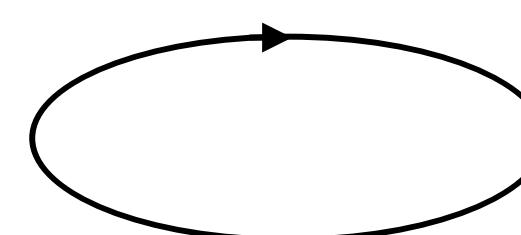
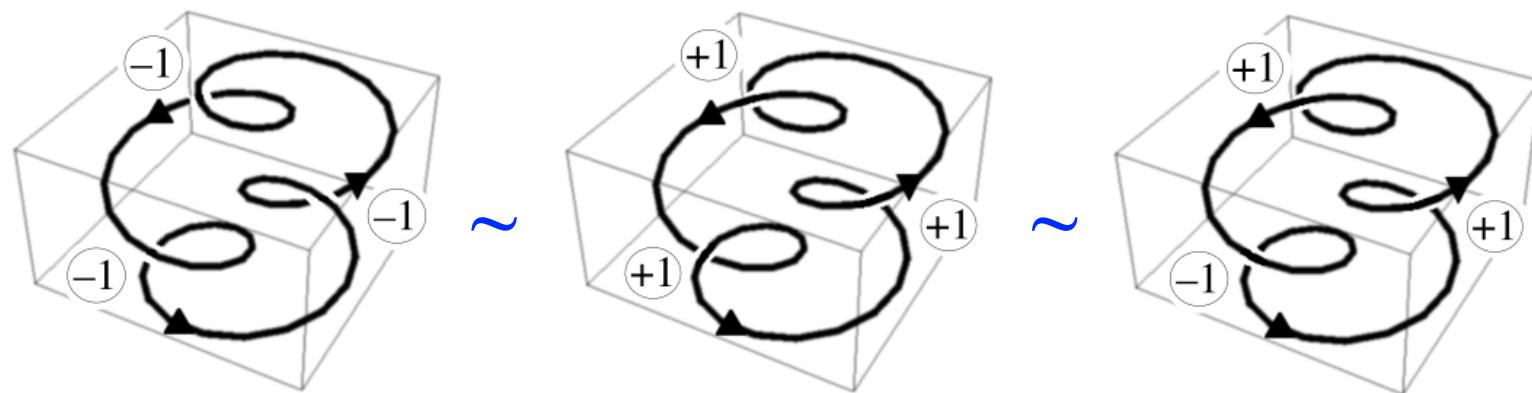
Indented diagram and signed crossings



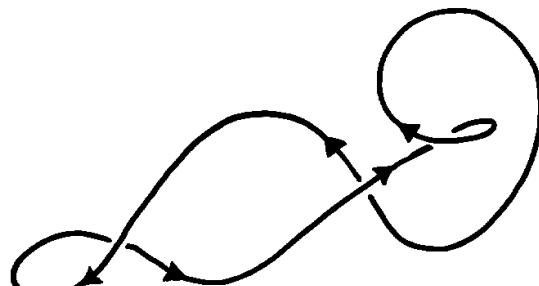
ν



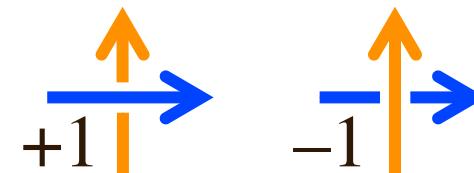
Indented diagram and signed crossings



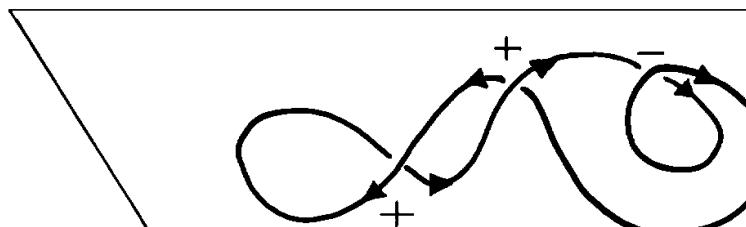
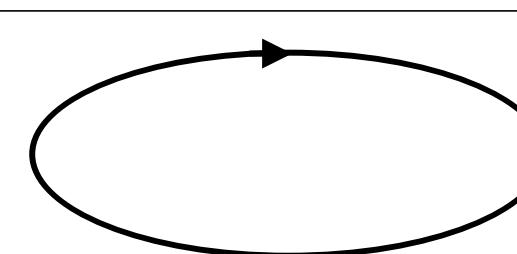
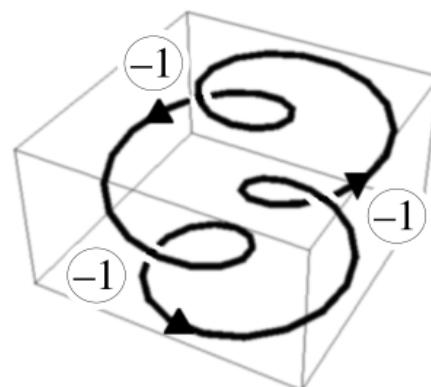
Indented diagram and signed crossings



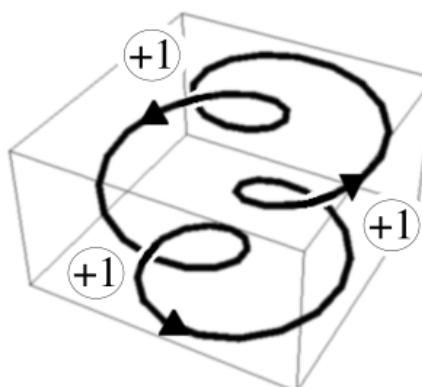
ν



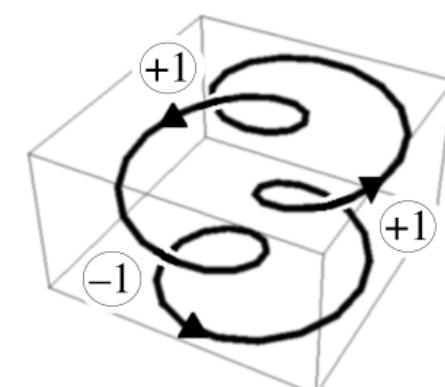
minimal diagram!



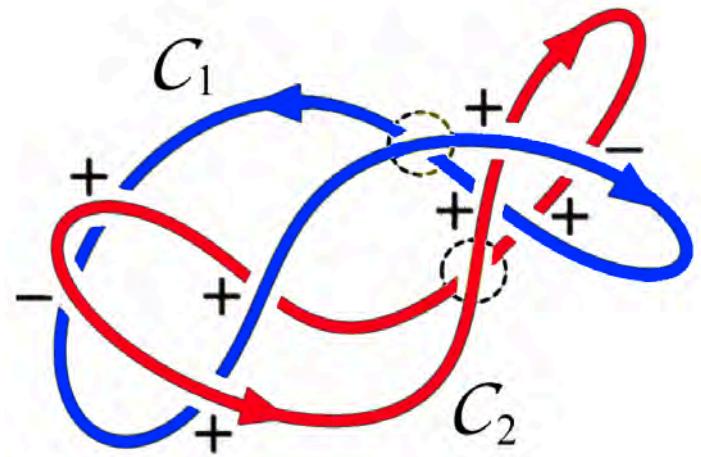
\sim



\sim

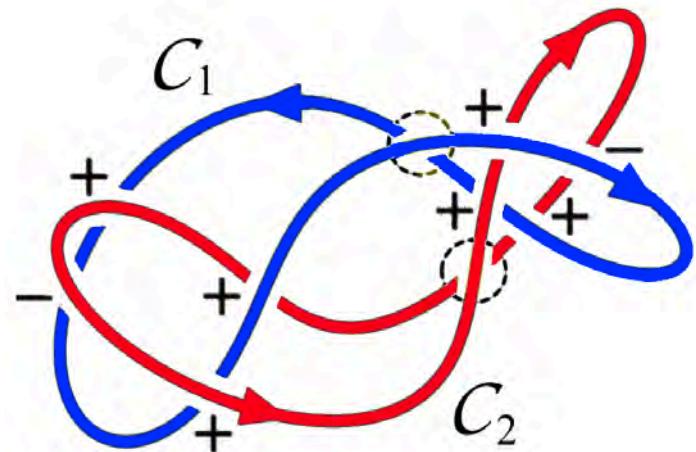


Minimal diagrams and topological invariants



generic projection

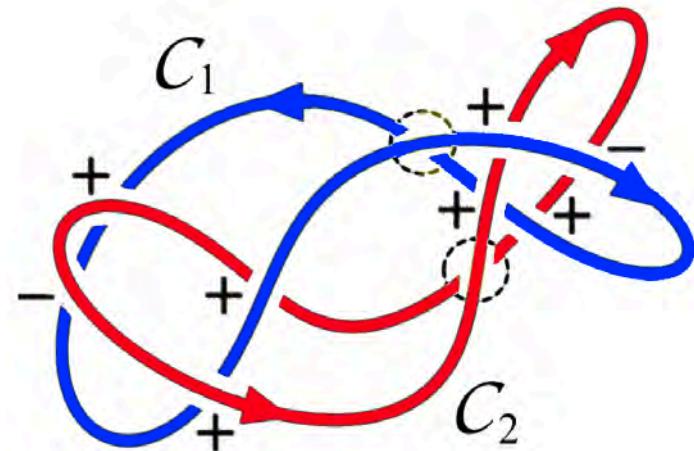
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

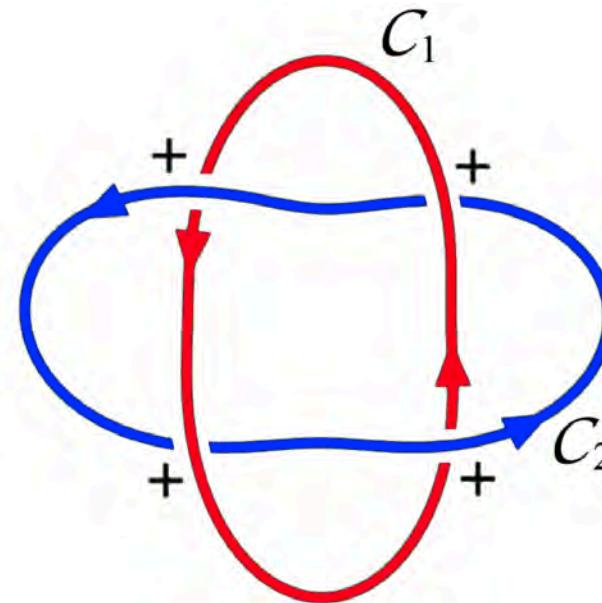
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

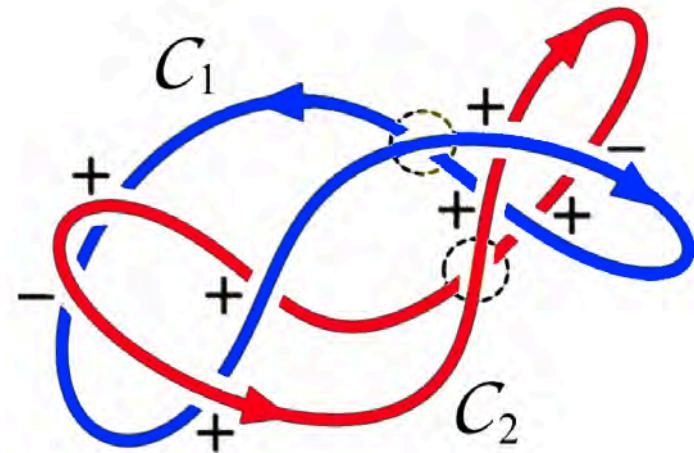
~



minimal projection

$$N = 2$$

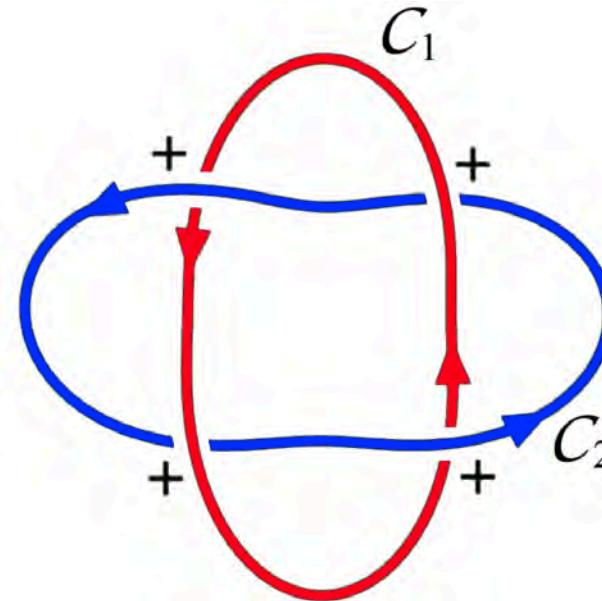
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

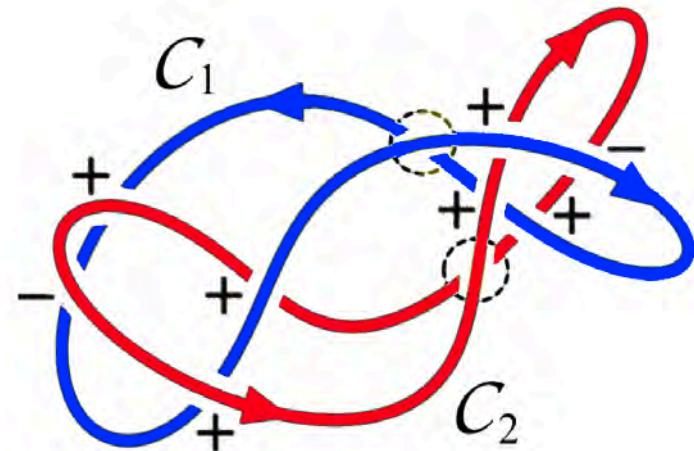
~



minimal projection

$$N = 2, \ Lk_{12} = +2$$

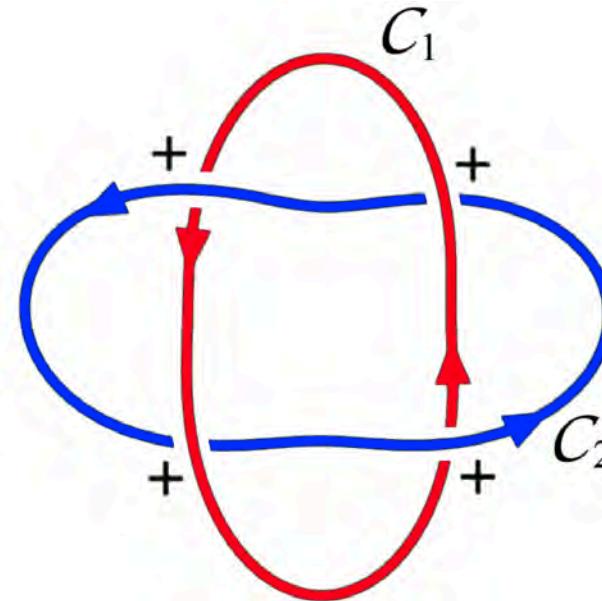
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

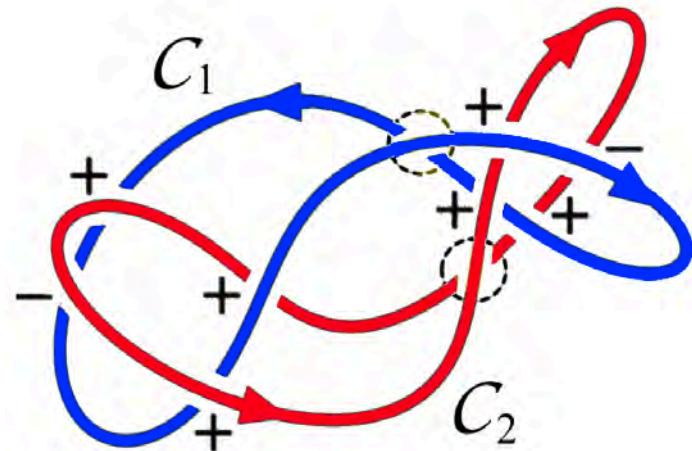
~



minimal projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = c_{\min} = 4$$

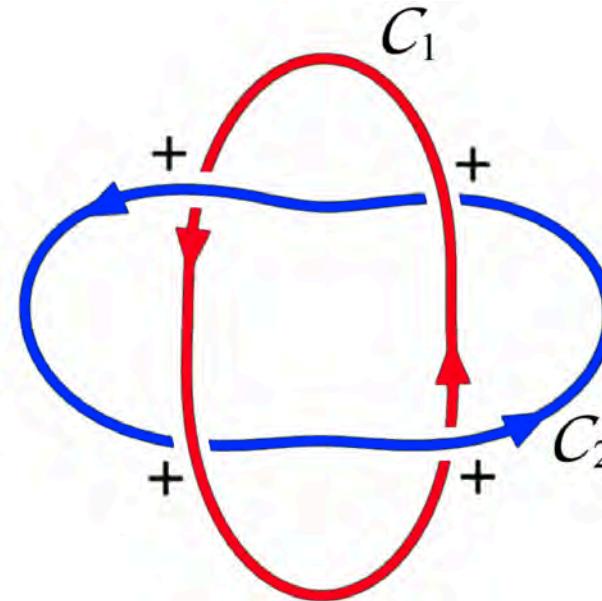
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

~

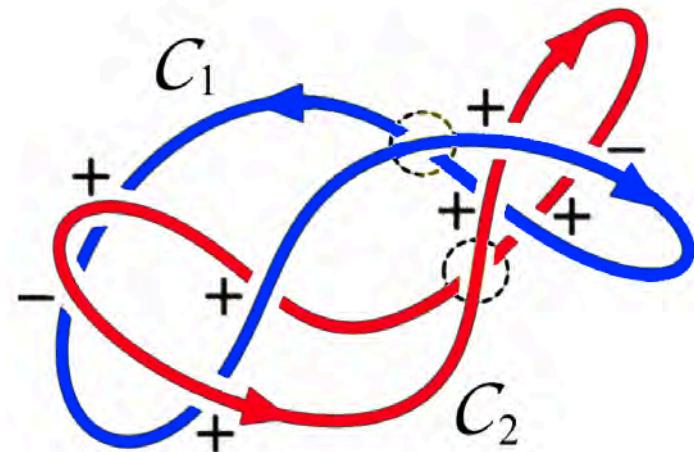


minimal projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = c_{\min} = 4$$

- **From generic diagrams: minimal diagram presentation;**

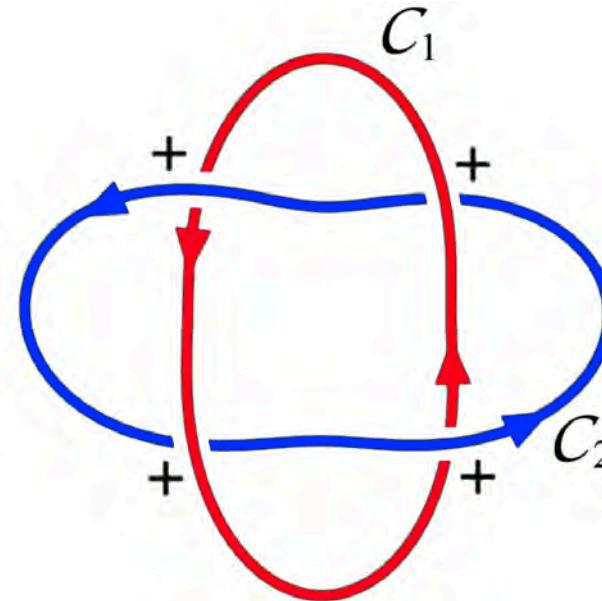
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

~

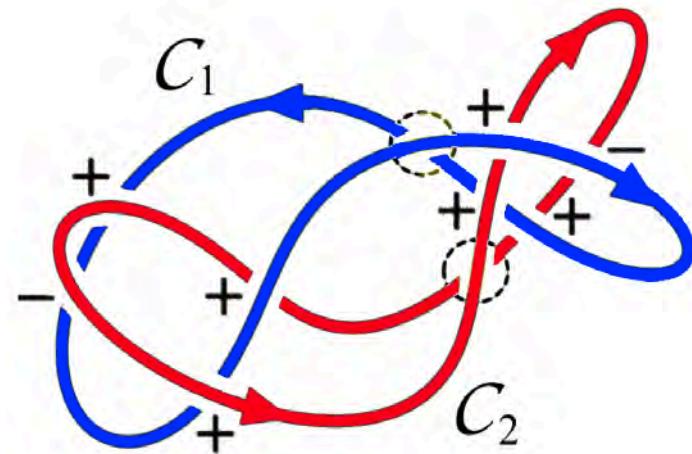


minimal projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = c_{\min} = 4$$

- **From generic diagrams: minimal diagram presentation;**
- **From number of components N : topological linking number Lk_{12} ;**

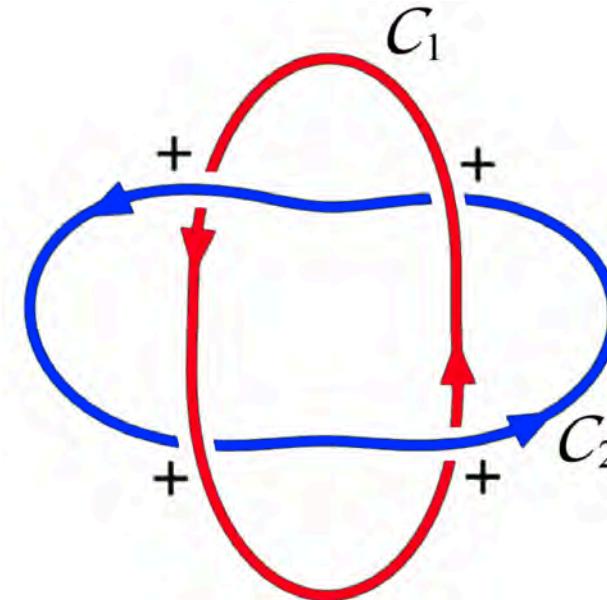
Minimal diagrams and topological invariants



generic projection

$$N = 2, \ Lk_{12} = +2, \ \bar{C} = 10$$

~

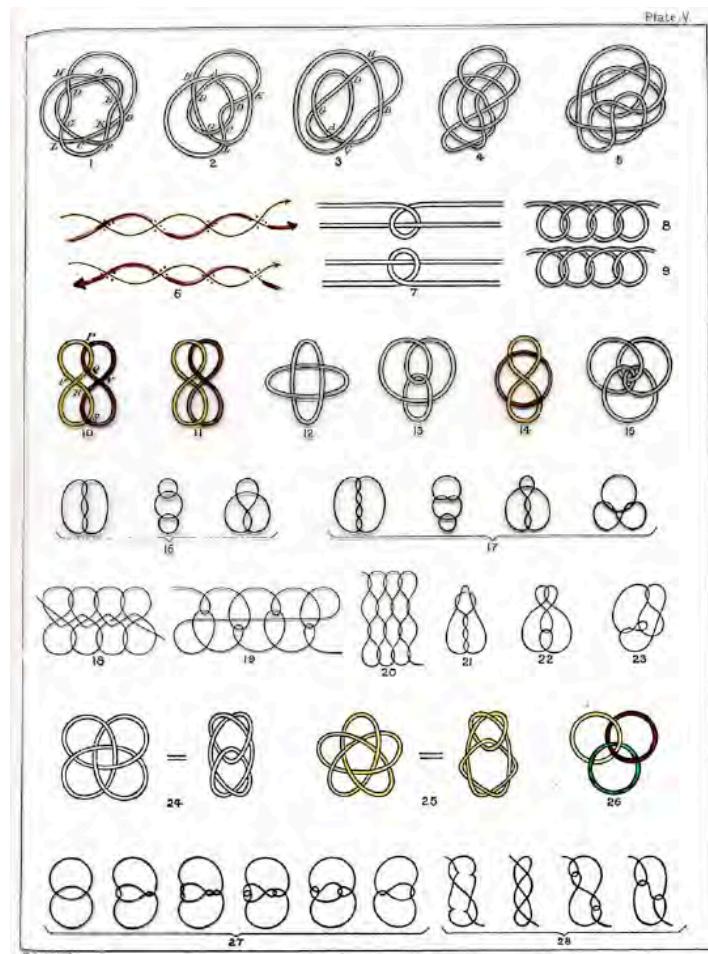


minimal projection

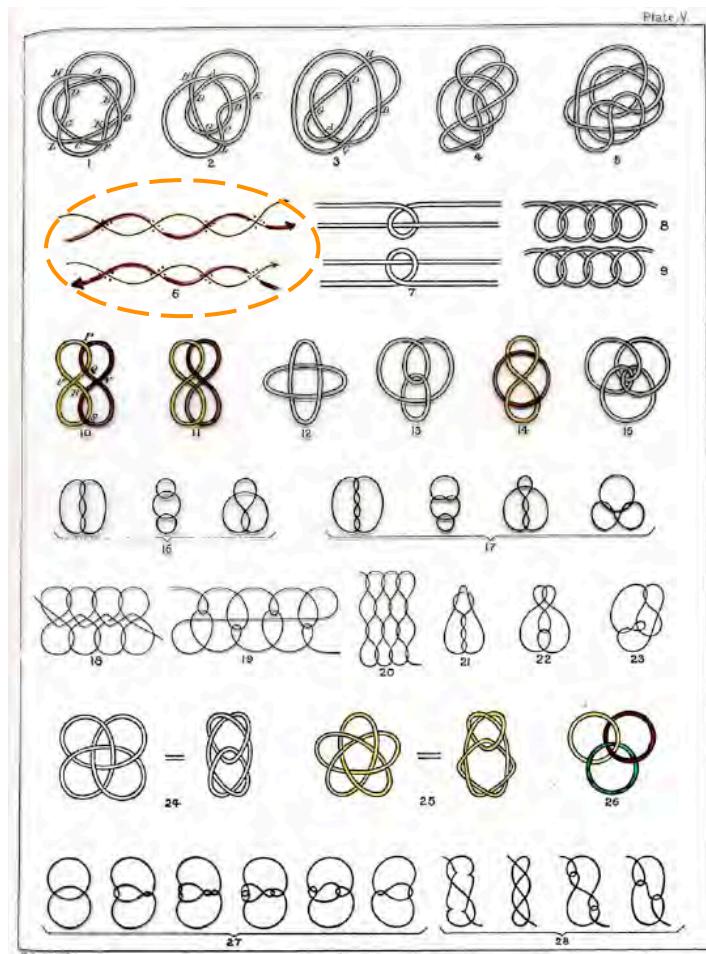
$$N = 2, \ Lk_{12} = +2, \ \bar{C} = c_{\min} = 4$$

- **From generic diagrams: minimal diagram presentation;**
- **From number of components N : topological linking number Lk_{12} ;**
- **From number of crossings \bar{C} : topological crossing number c_{\min} .**

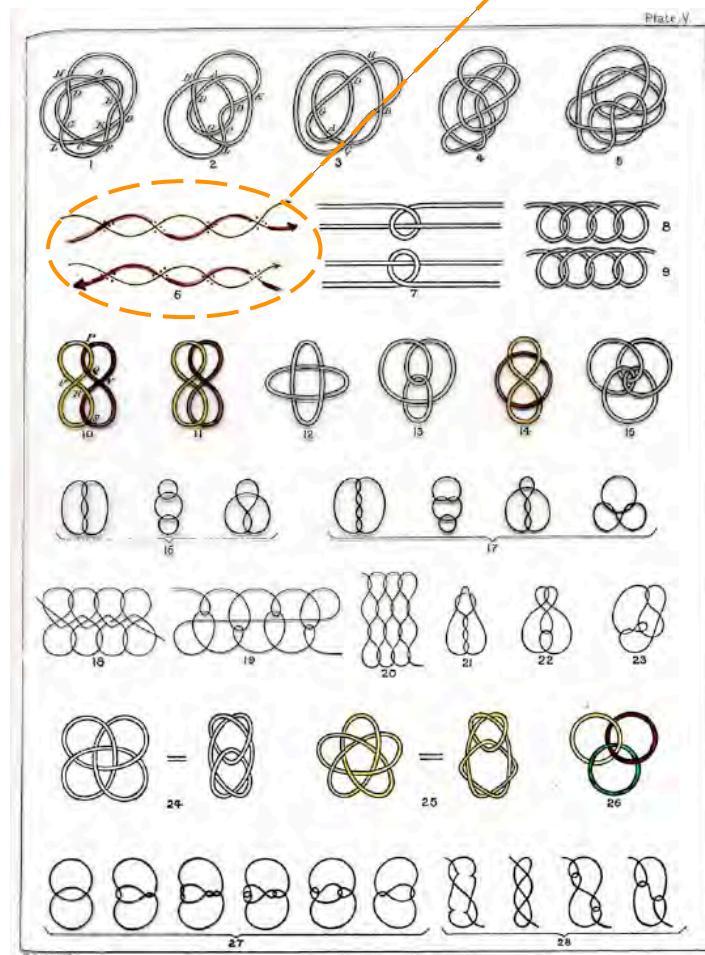
First results from Tait's tabulation



First results from Tait's tabulation



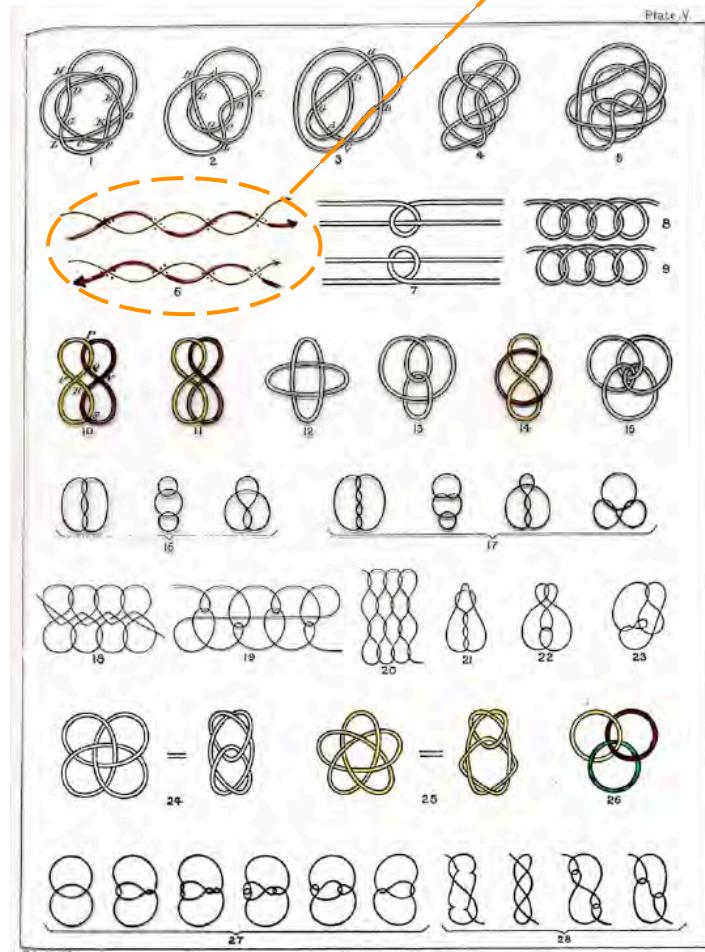
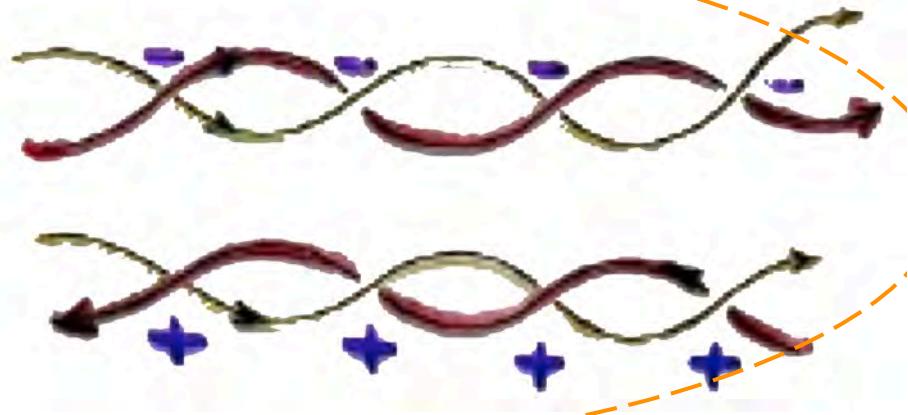
First results from Tait's tabulation



First results from Tait's tabulation

$$c_{\min} = 4$$

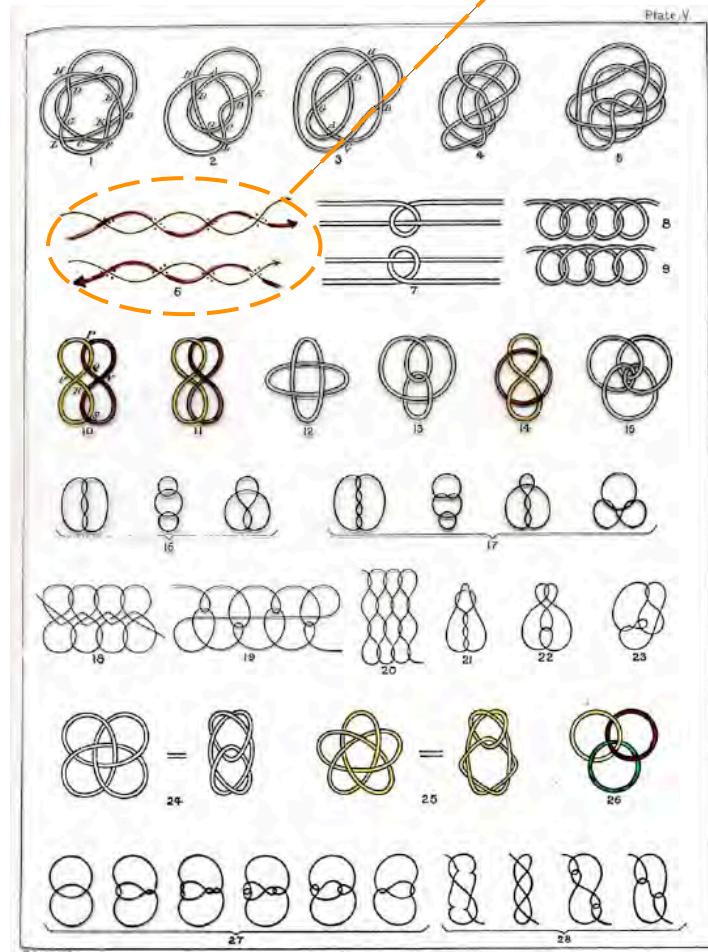
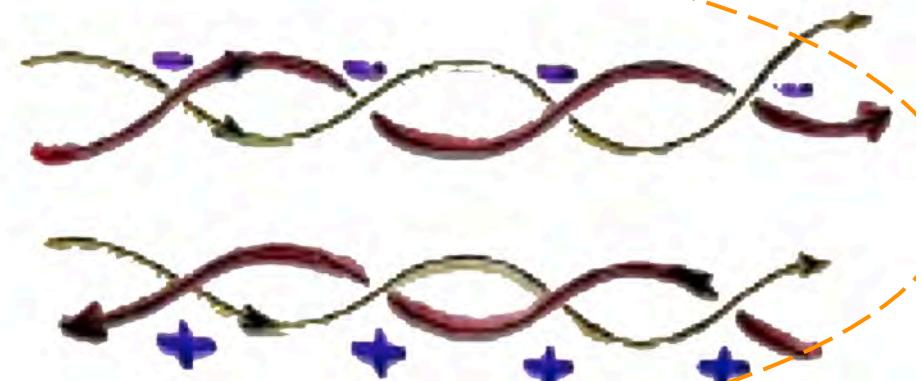
$$c_{\min} = 4$$



First results from Tait's tabulation

$$c_{\min} = 4, Lk = -2$$

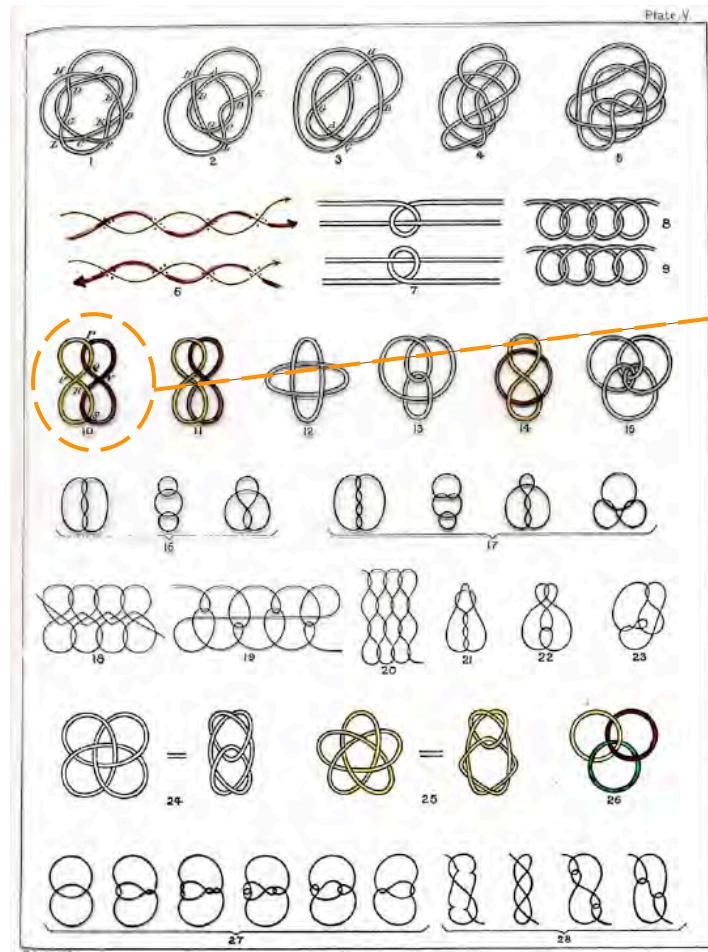
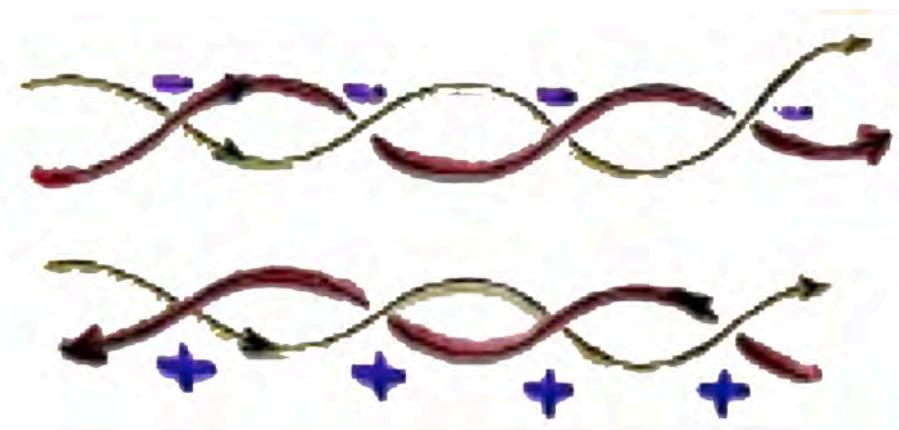
$$c_{\min} = 4, Lk = +2$$



First results from Tait's tabulation

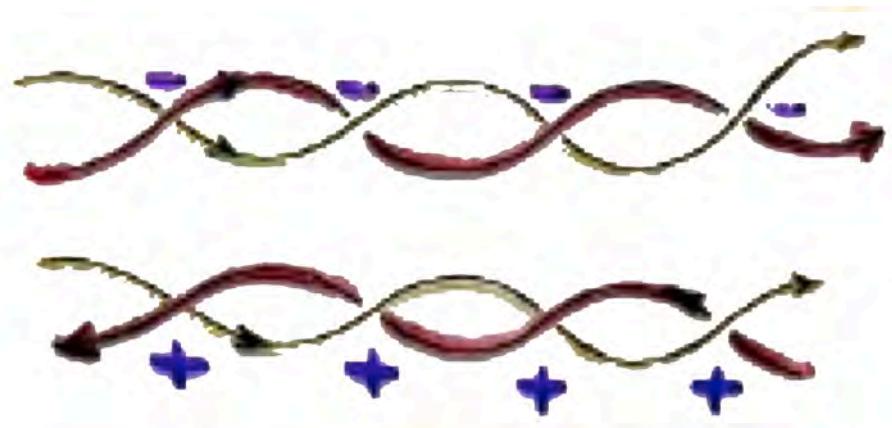
$$c_{\min} = 4, \ Lk = -2$$

$$c_{\min} = 4, \ Lk = +2$$

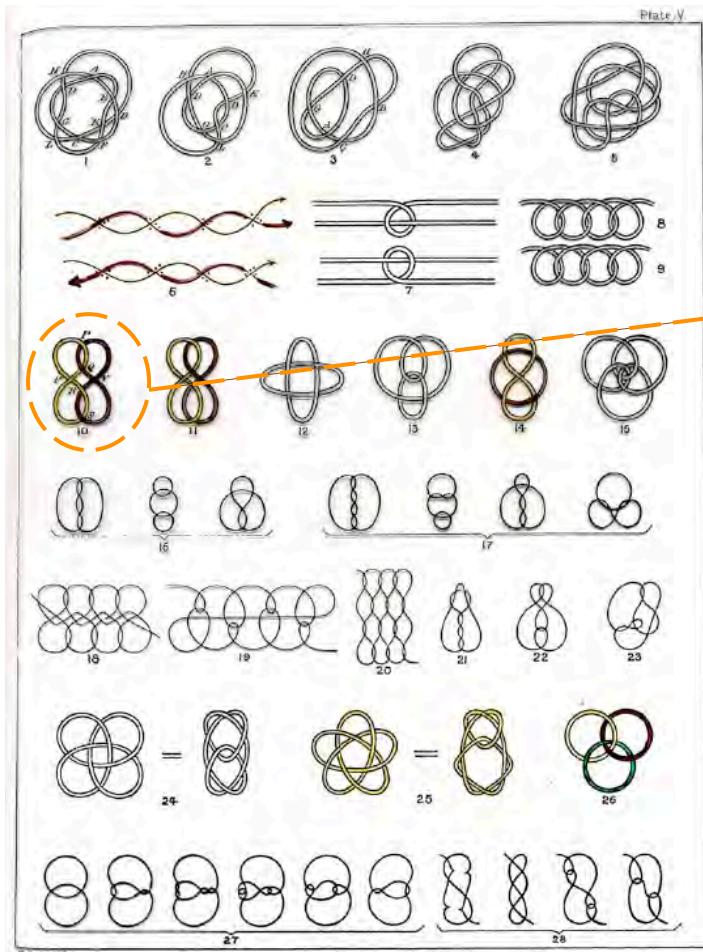
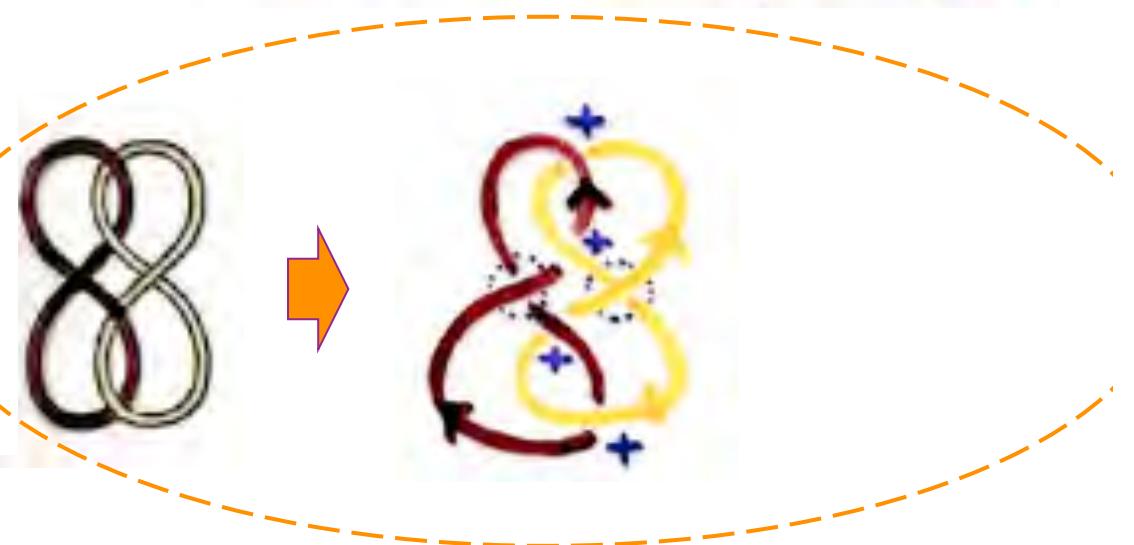


First results from Tait's tabulation

$$c_{\min} = 4, \ Lk = -2$$

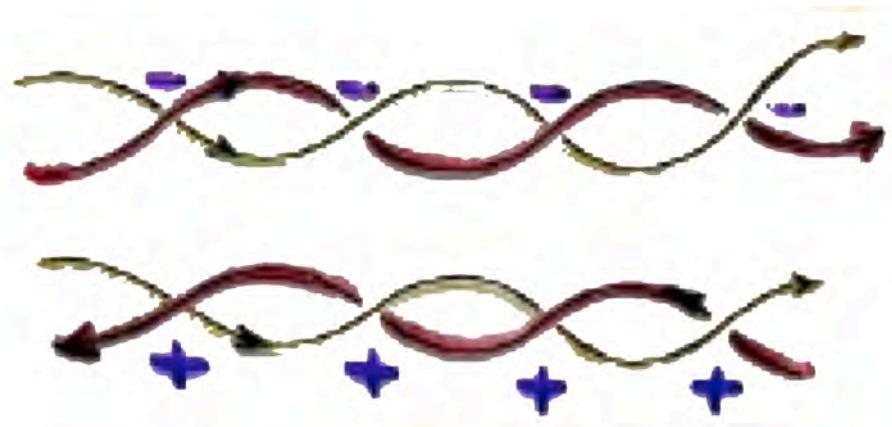


$$c_{\min} = 4, \ Lk = +2$$

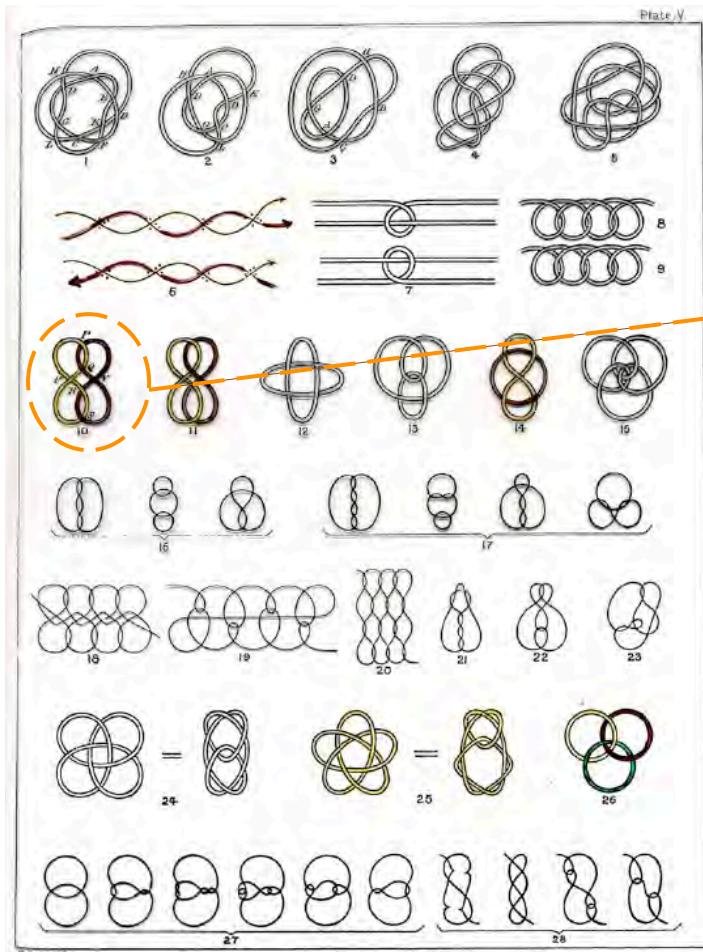
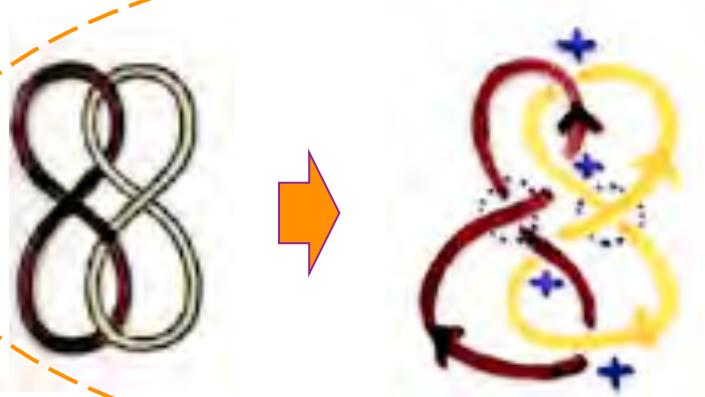


First results from Tait's tabulation

$$c_{\min} = 4, \ Lk = -2$$



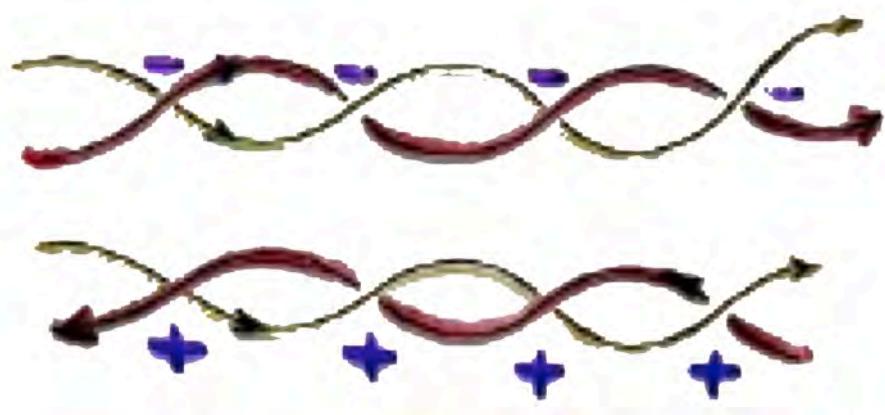
$$c_{\min} = 4, \ Lk = +2$$



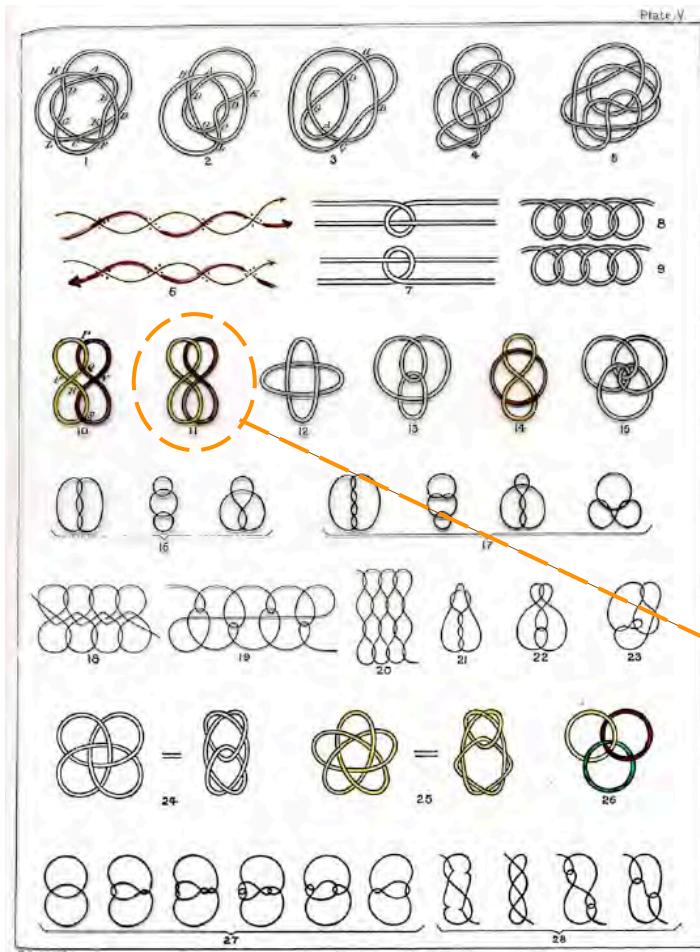
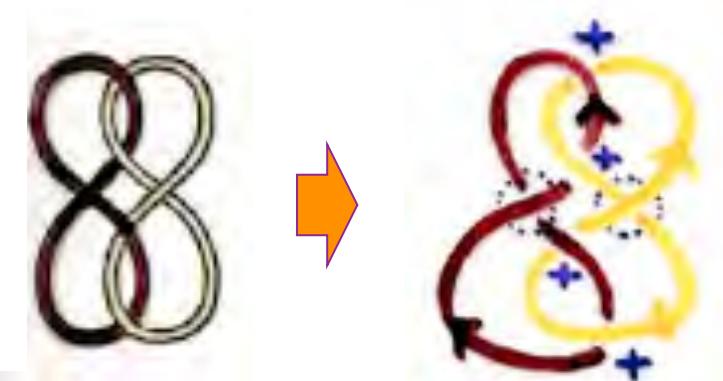
$$c_{\min} = 4 \\ Lk = +2$$

First results from Tait's tabulation

$$c_{\min} = 4, \ Lk = -2$$



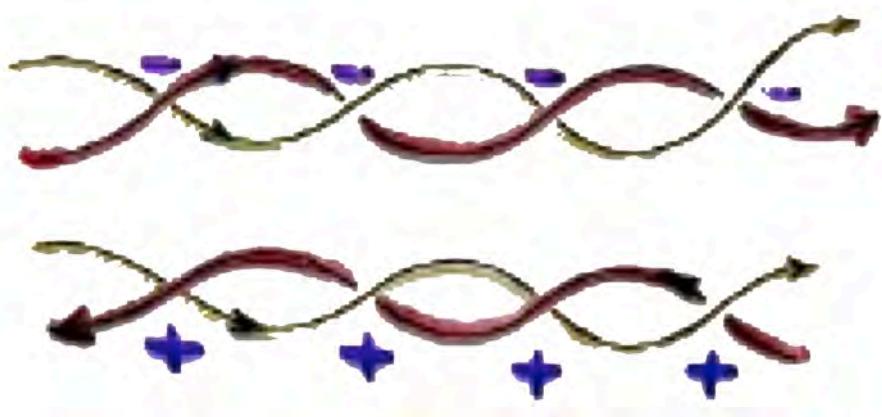
$$c_{\min} = 4, \ Lk = +2$$



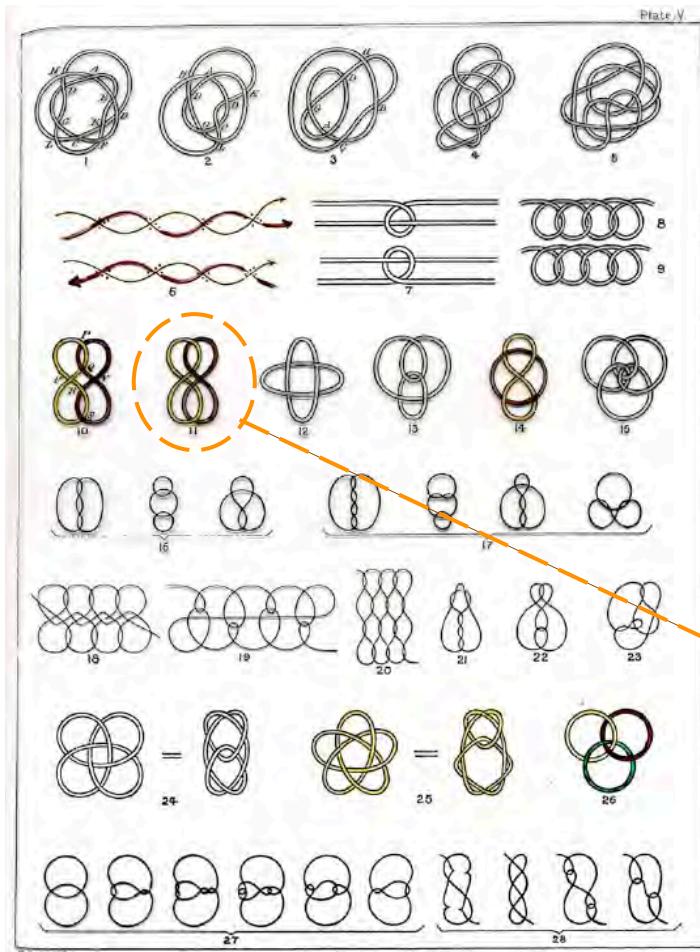
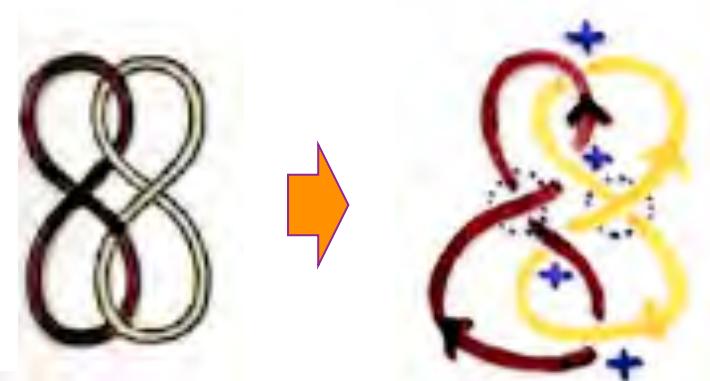
$$c_{\min} = 4 \\ Lk = +2$$

First results from Tait's tabulation

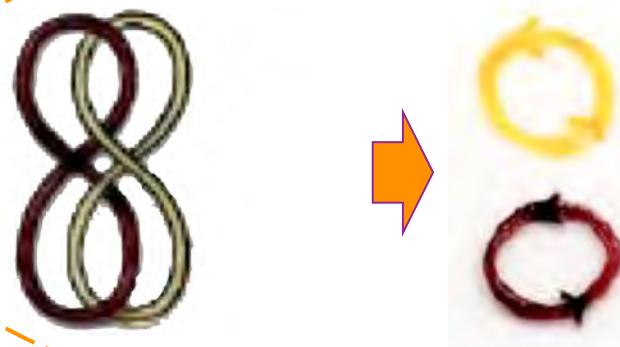
$$c_{\min} = 4, \ Lk = -2$$



$$c_{\min} = 4, \ Lk = +2$$

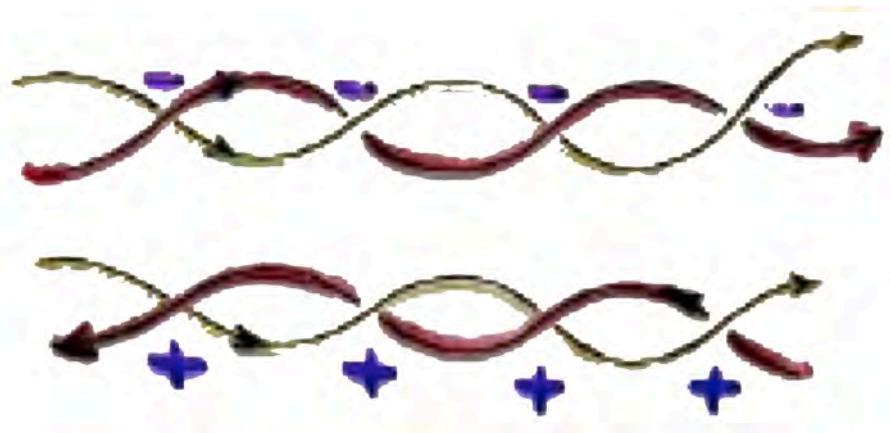


$$c_{\min} = 4 \\ Lk = +2$$

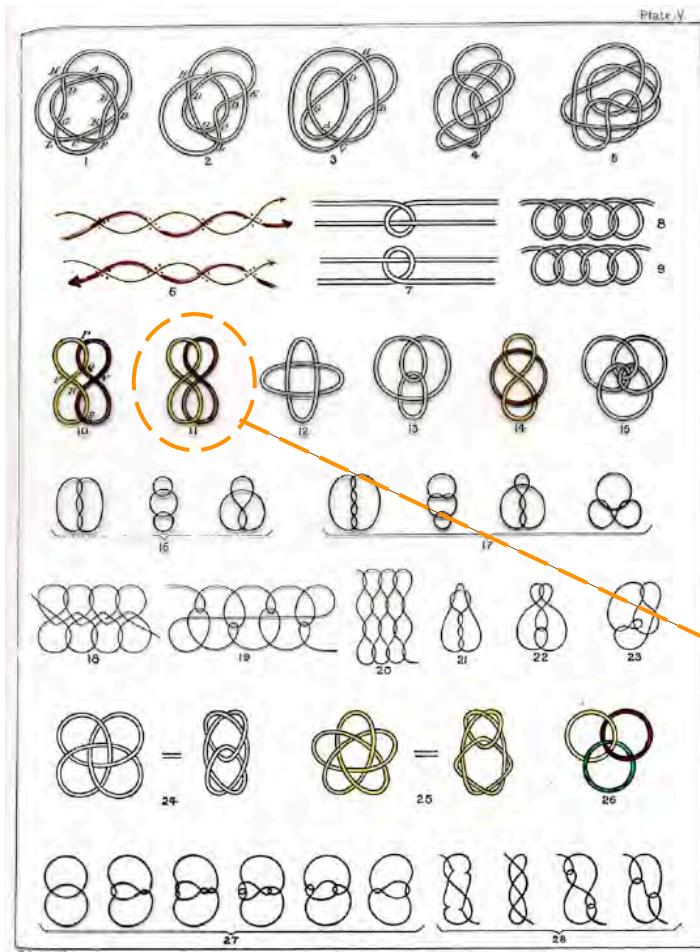
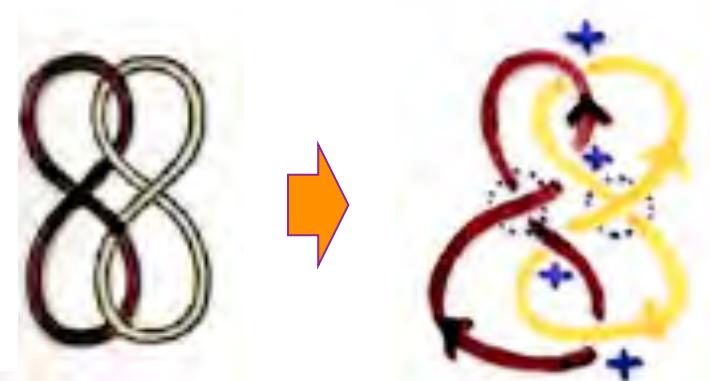


First results from Tait's tabulation

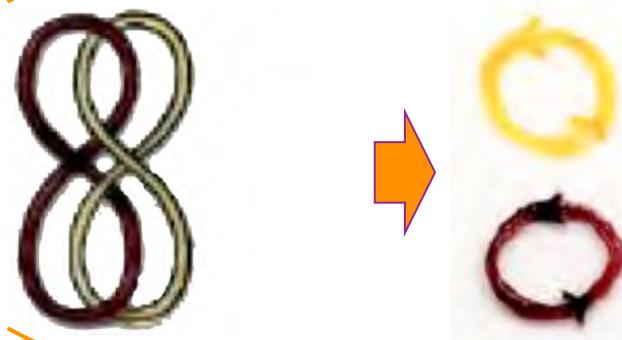
$$c_{\min} = 4, \ Lk = -2$$



$$c_{\min} = 4, \ Lk = +2$$

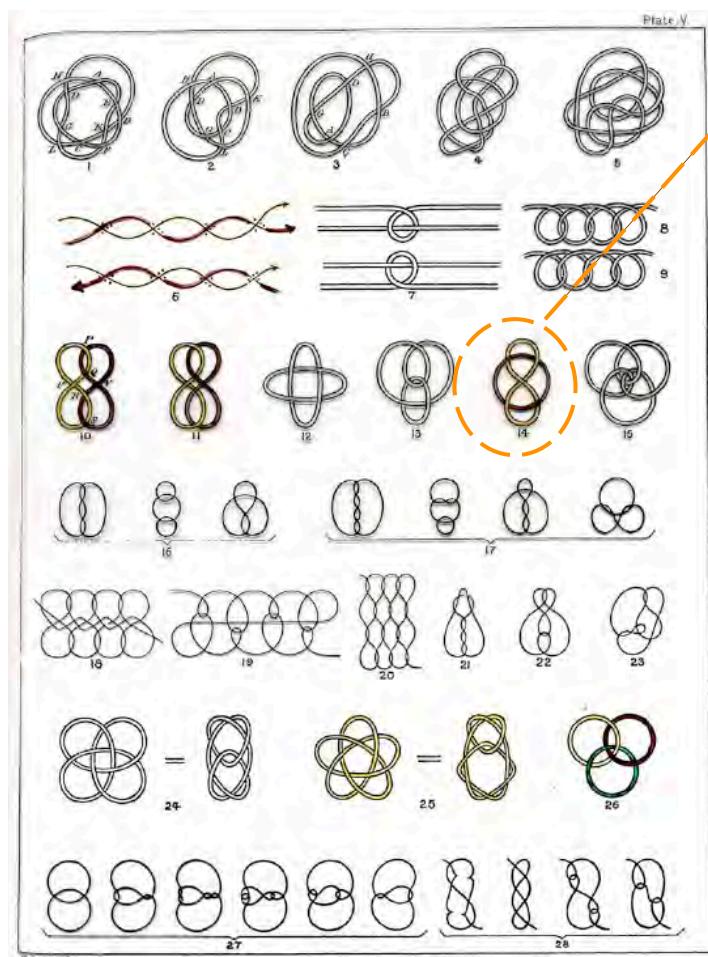


$$c_{\min} = 4 \\ Lk = +2$$

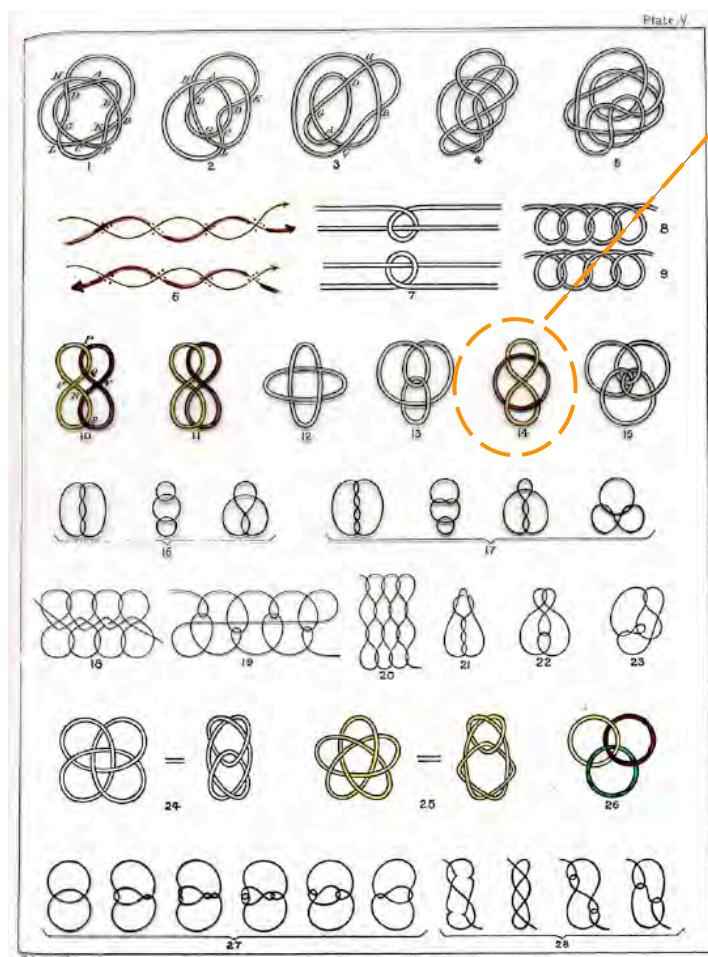
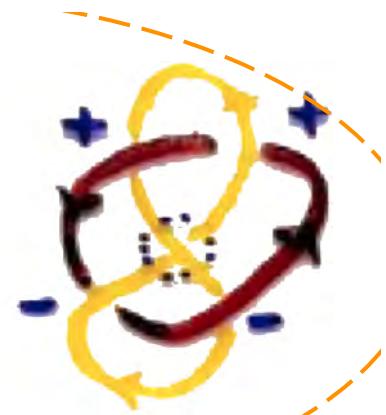


$$c_{\min} = 0 \\ Lk = 0$$

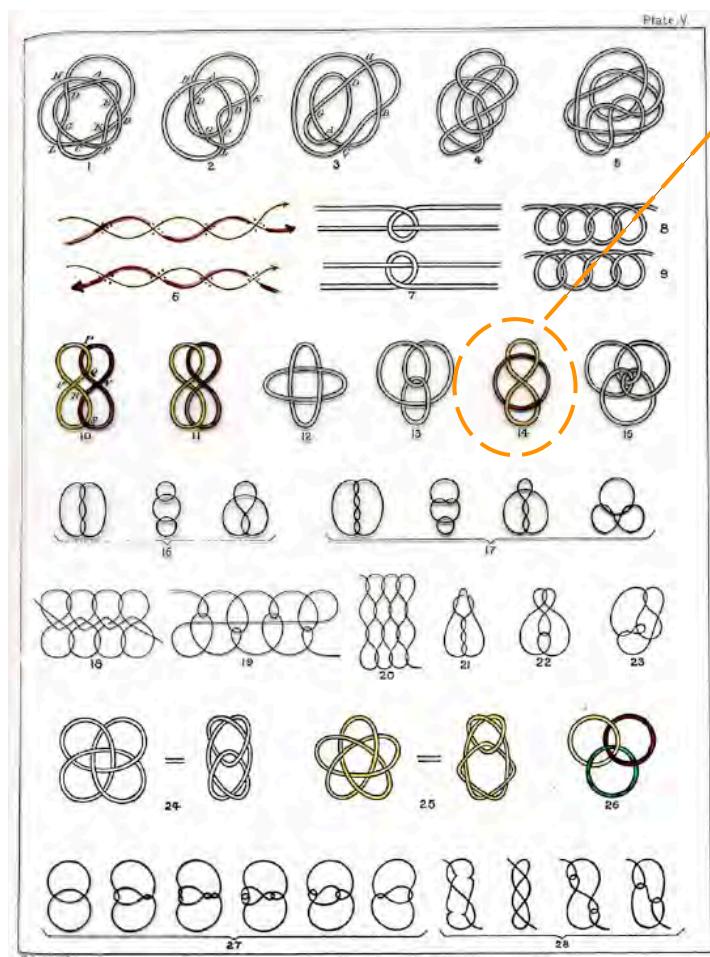
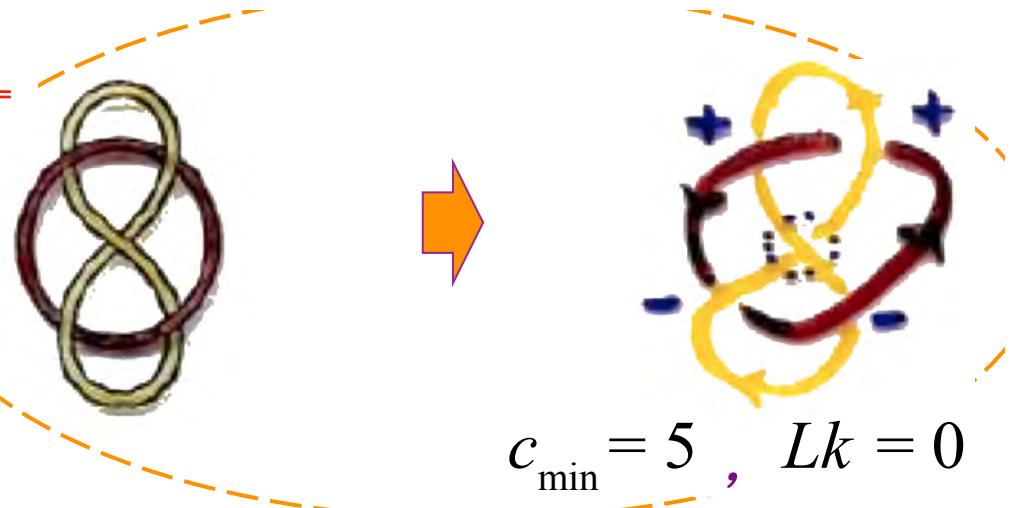
First results from Tait's tabulation



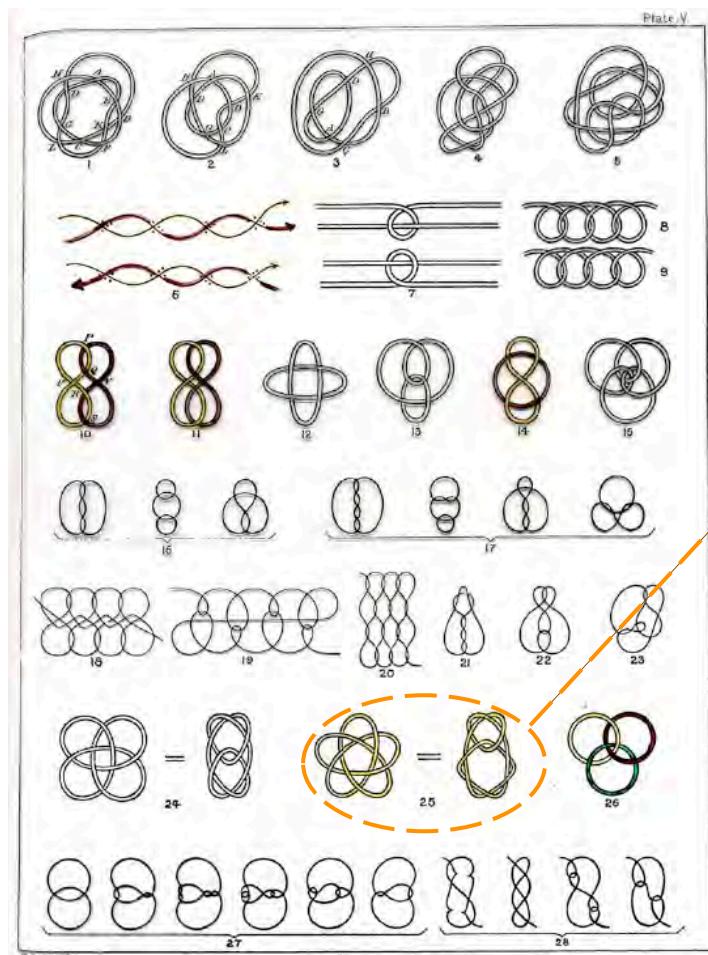
First results from Tait's tabulation



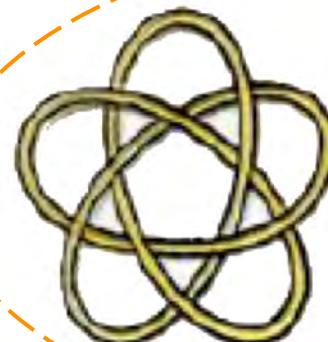
First results from Tait's tabulation



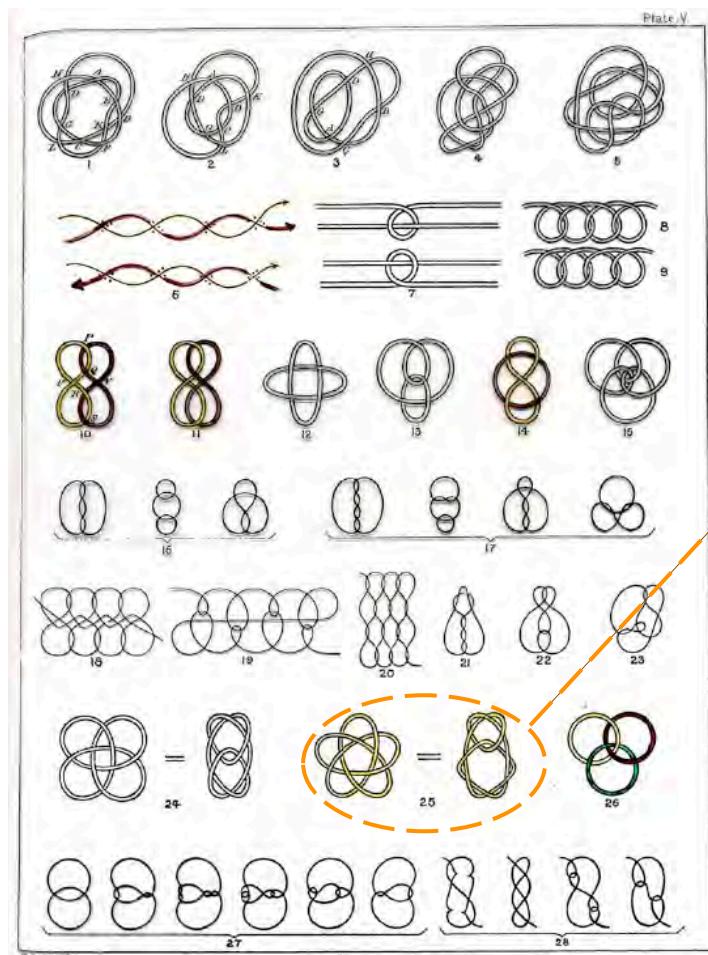
First results from Tait's tabulation



$$c_{\min} = 5, \quad Lk = 0$$



First results from Tait's tabulation



$$c_{\min} = 5, \quad Lk = 0$$

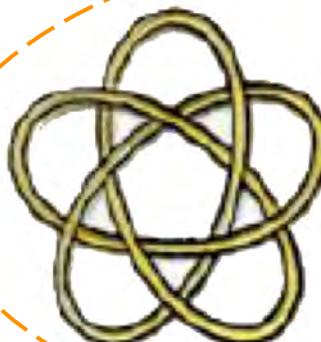
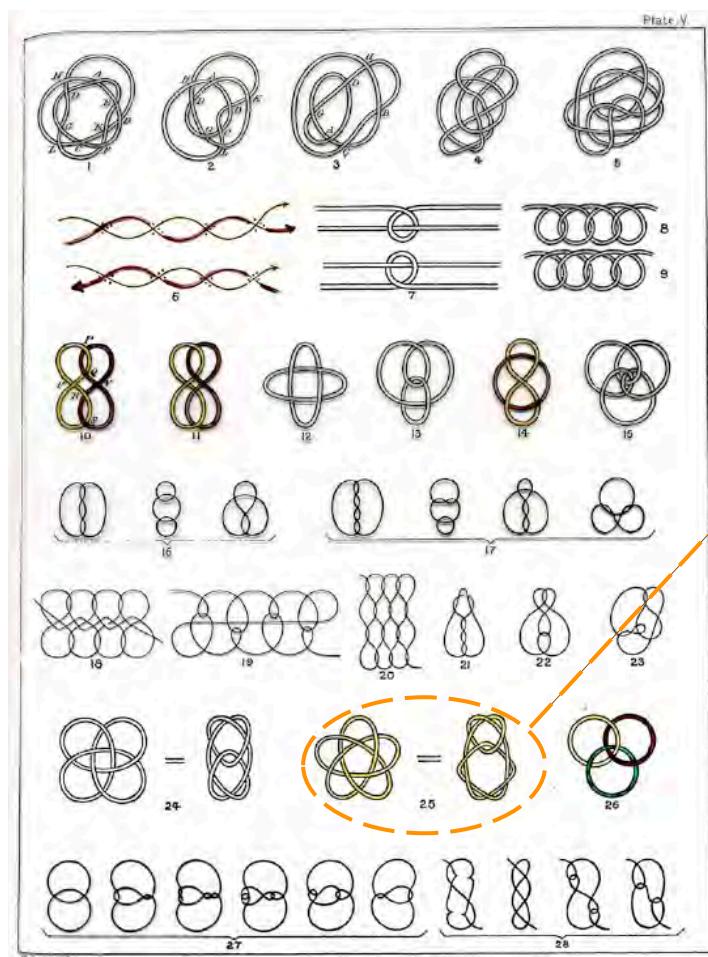
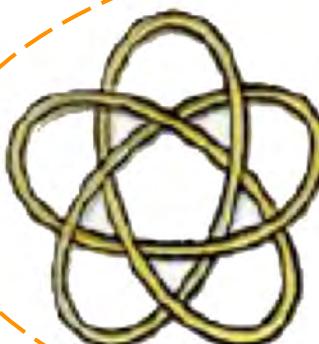


Diagram 25 is equivalent to Diagram 26.

First results from Tait's tabulation

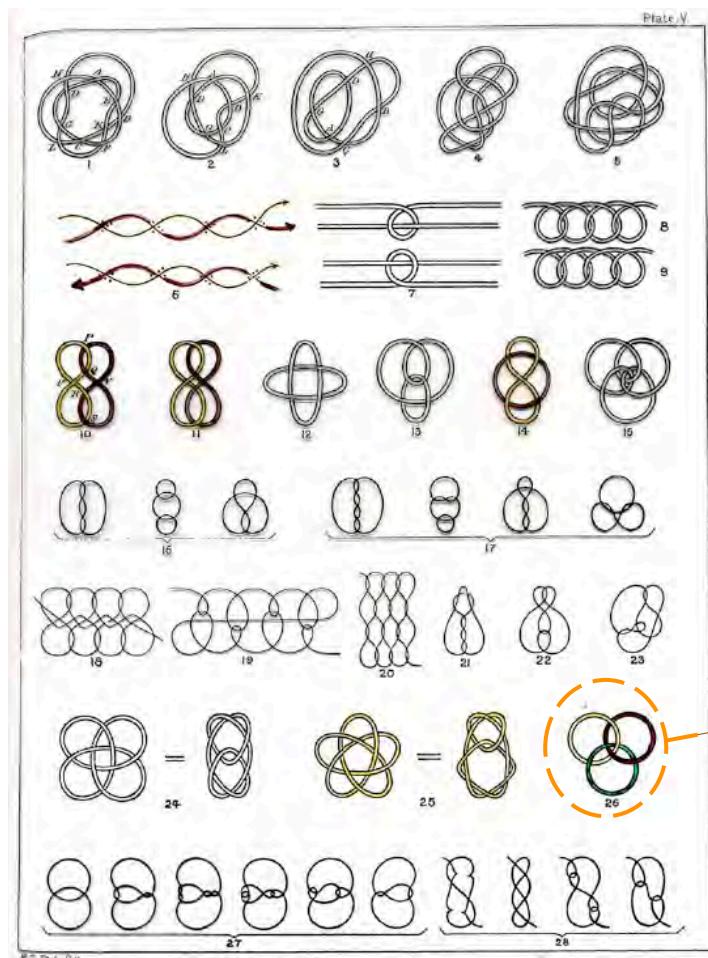


$$c_{\min} = 5, \quad Lk = 0$$



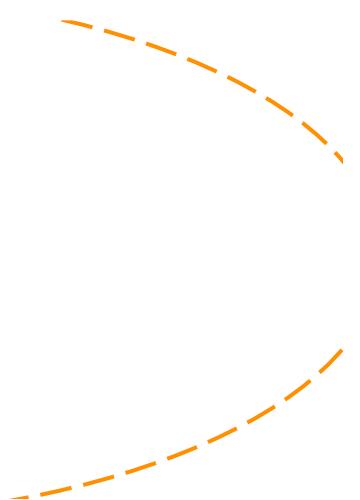
$$c_{\min} = 10, \quad Lk = ?$$

First results from Tait's tabulation

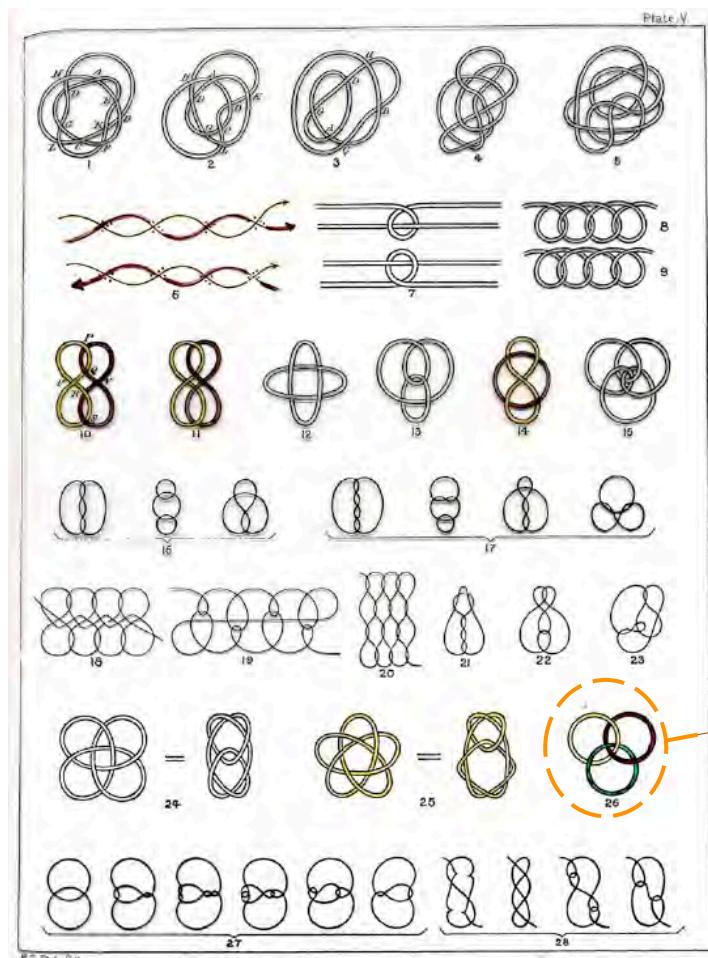
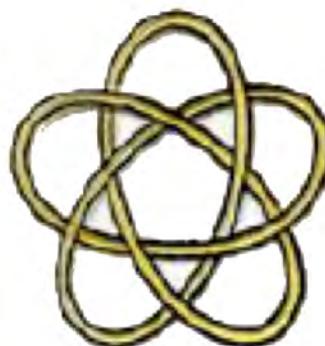


$$c_{\min} = 5, \quad Lk = 0$$

$$c_{\min} = 10, \quad Lk = ?$$



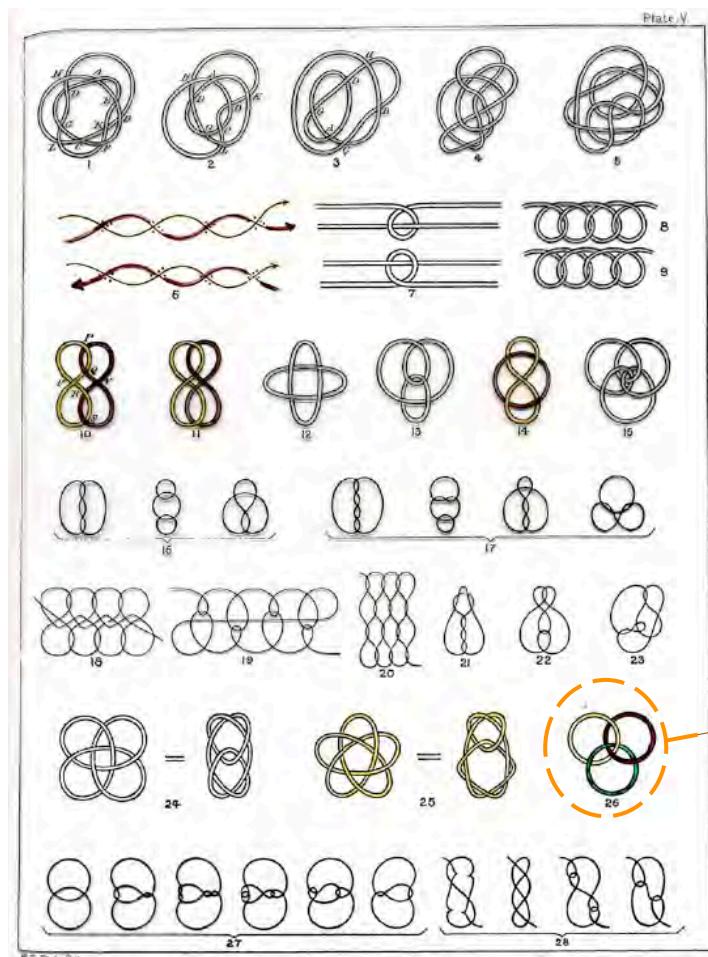
First results from Tait's tabulation



$$c_{\min} = 5, \quad Lk = 0$$

$$c_{\min} = 10, \quad Lk = ?$$

First results from Tait's tabulation



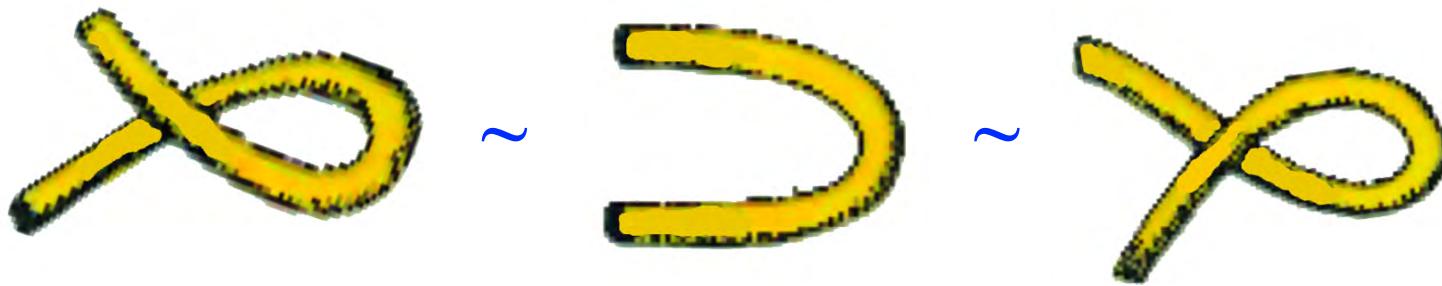
$$c_{\min} = 5, \quad Lk = 0$$

$$c_{\min} = 10, \quad Lk = ?$$

$$c_{\min} = 6, \quad Lk = 0$$

Reidemeister's moves

- Type I:



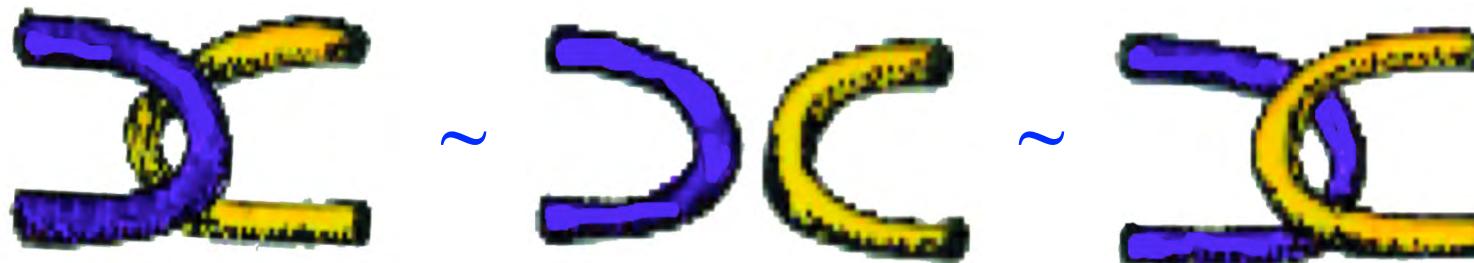
twist move

Reidemeister's moves

- Type I:

twist move

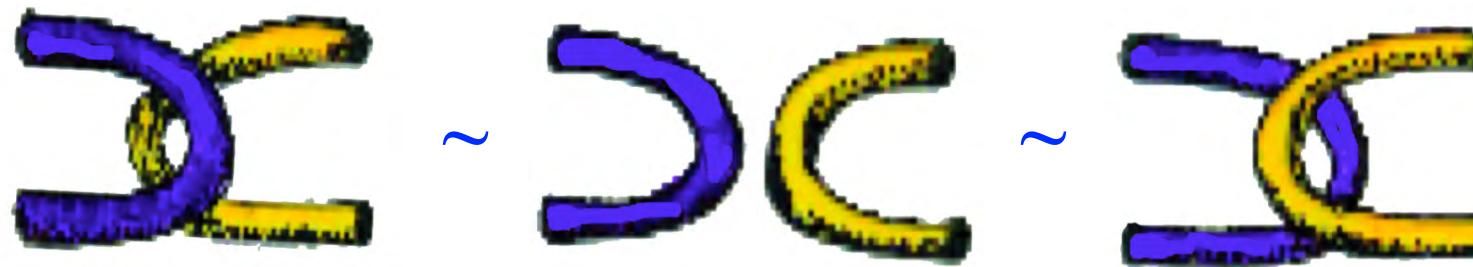
- Type II:



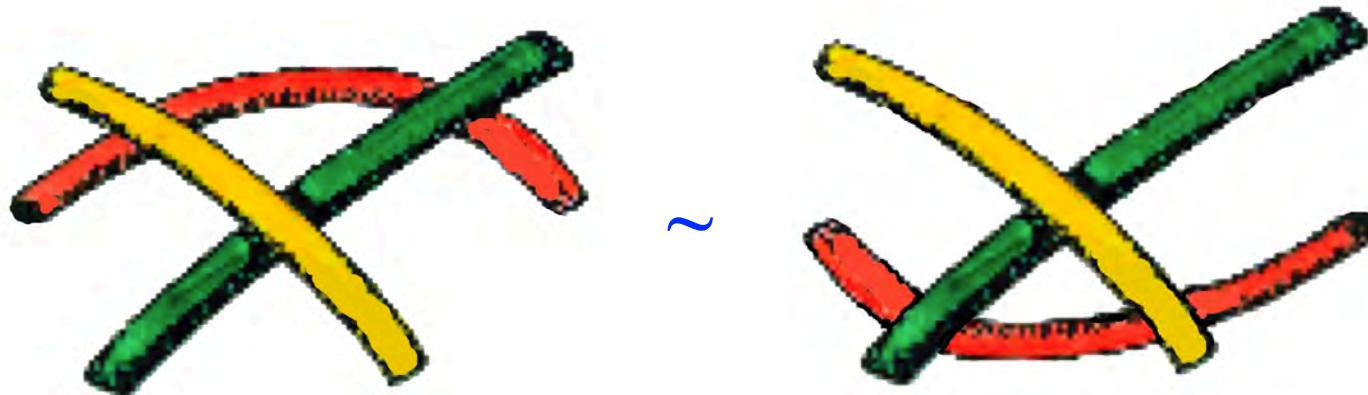
Reidemeister's moves

- **Type I:**

- **Type II:**

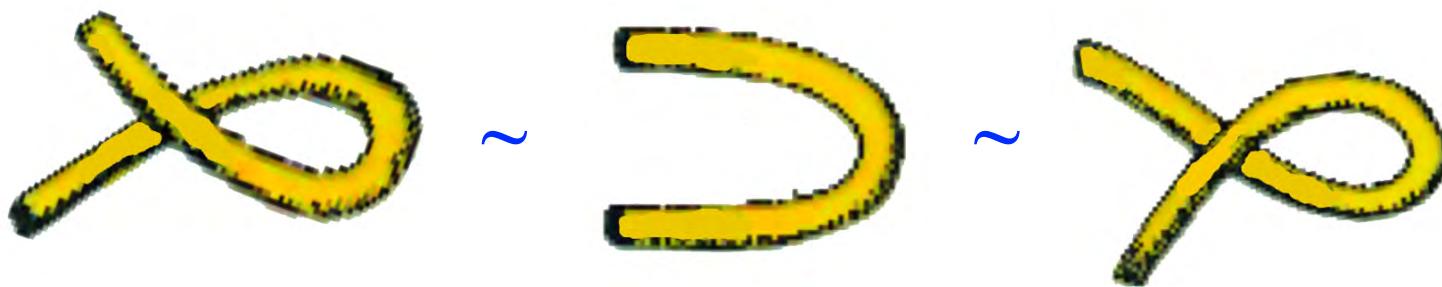


- **Type III:**



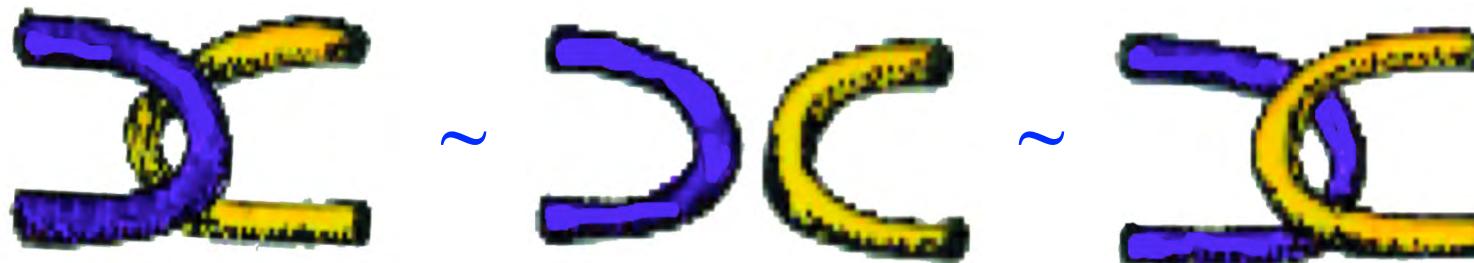
A remark: topology versus mechanics

- **Type I:**



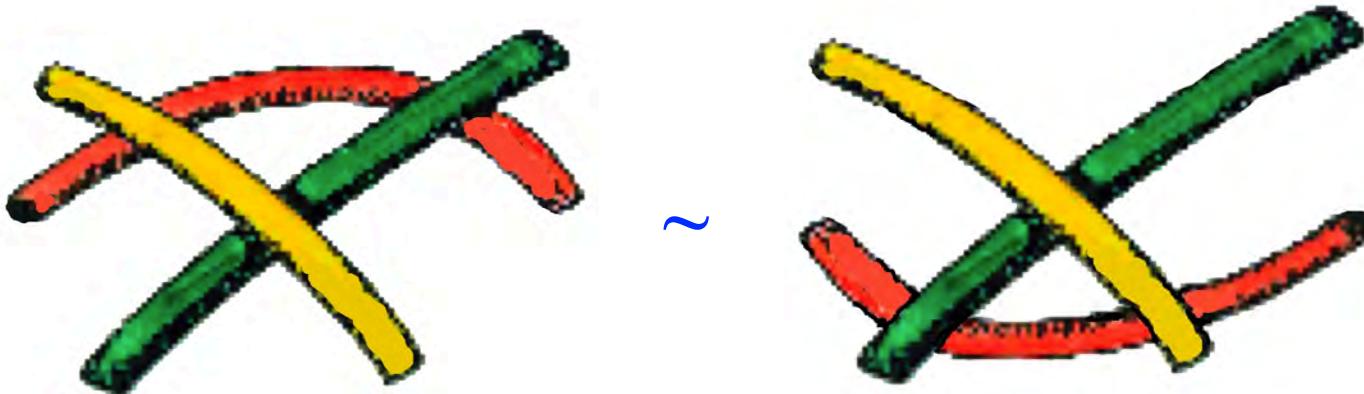
twist move

- **Type II:**



“flat topology”

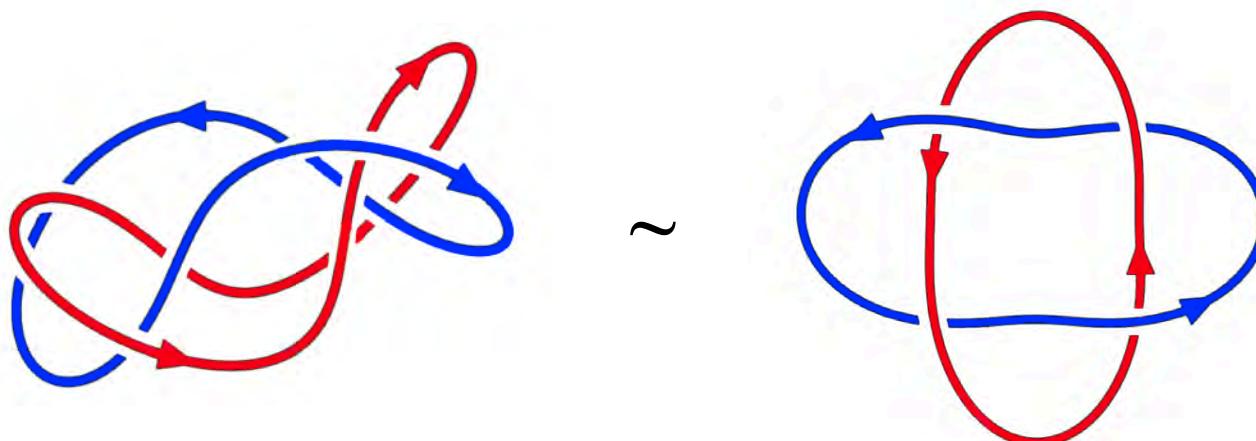
- **Type III:**



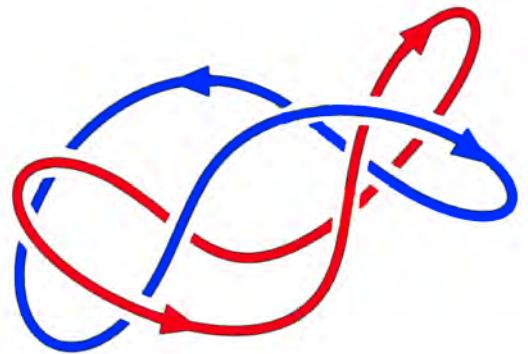
Reidemeister's theorem

“Two knots/links are topologically equivalent – i.e. they represent the same knot/link type – if one can be transformed into the other by a finite sequence of Reidemeister’s moves.”

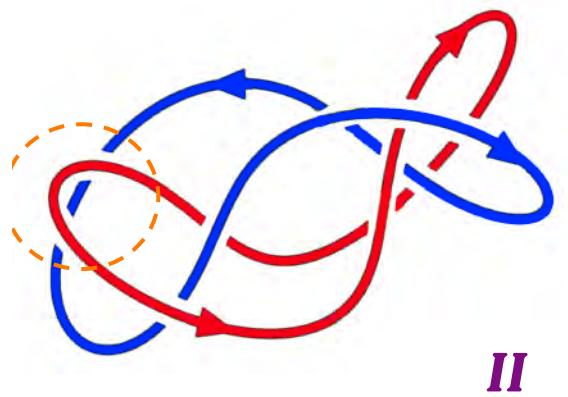
- **Example:**



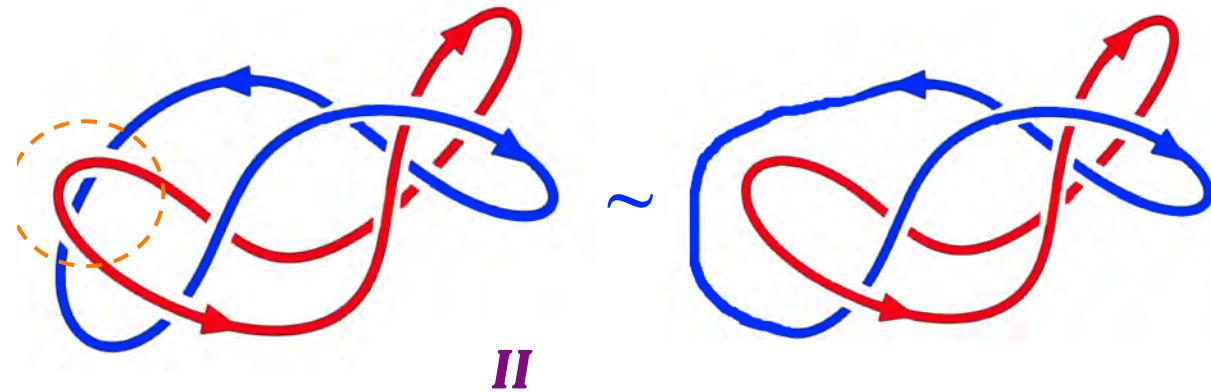
Reidemeister's moves in action



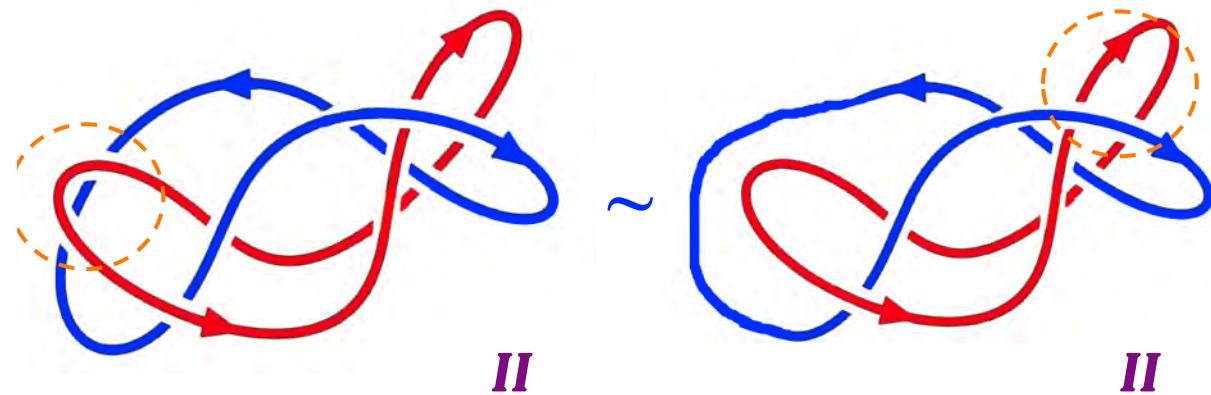
Reidemeister's moves in action



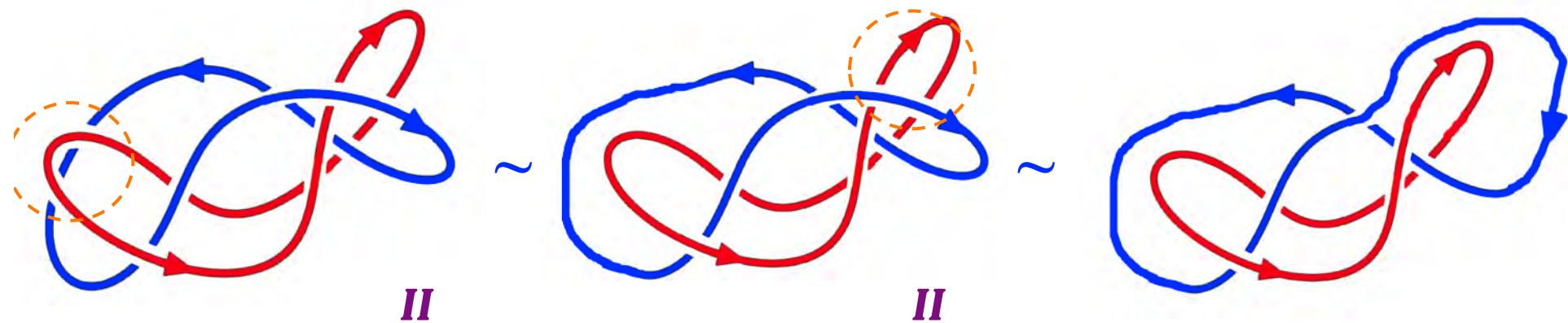
Reidemeister's moves in action



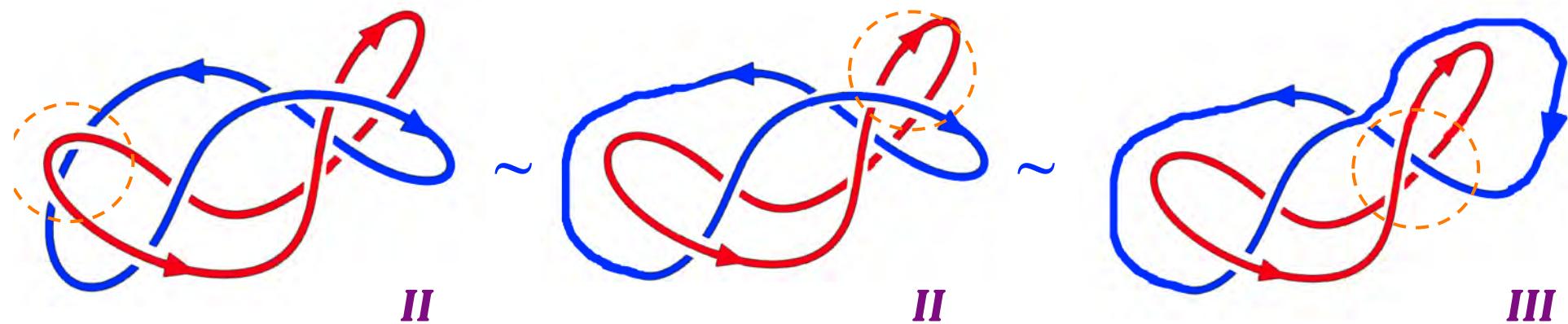
Reidemeister's moves in action



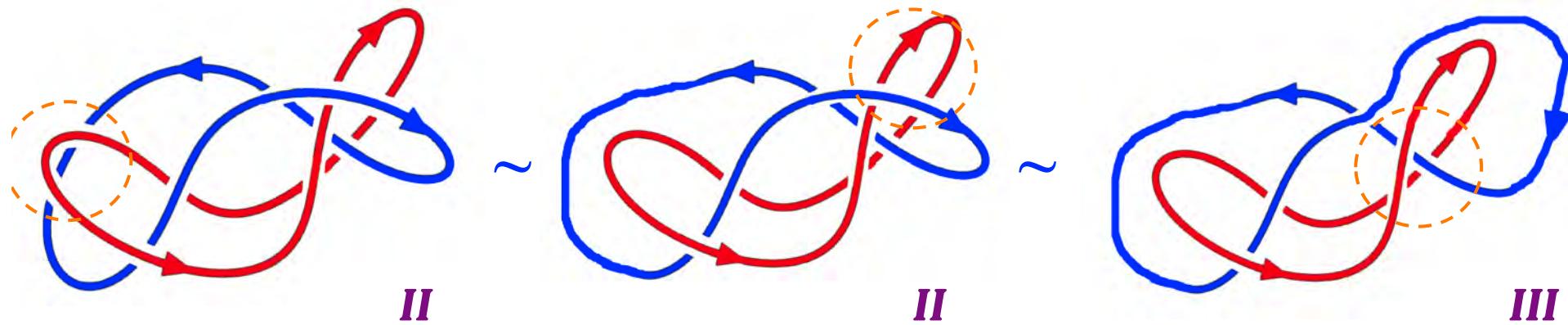
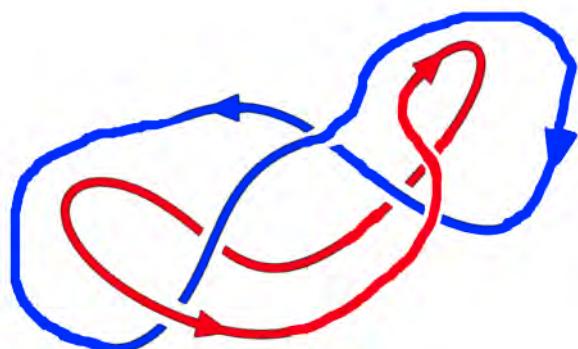
Reidemeister's moves in action



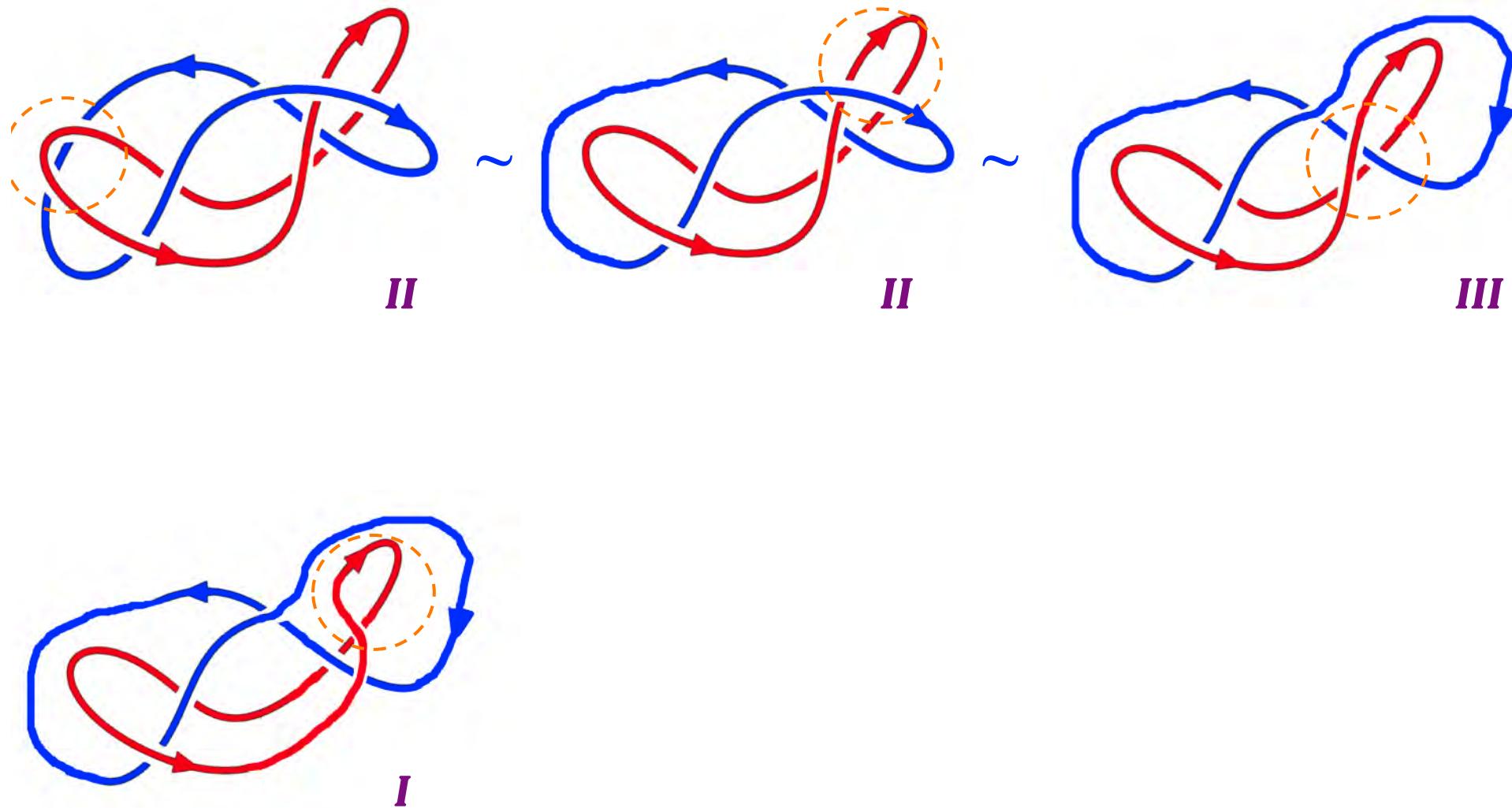
Reidemeister's moves in action



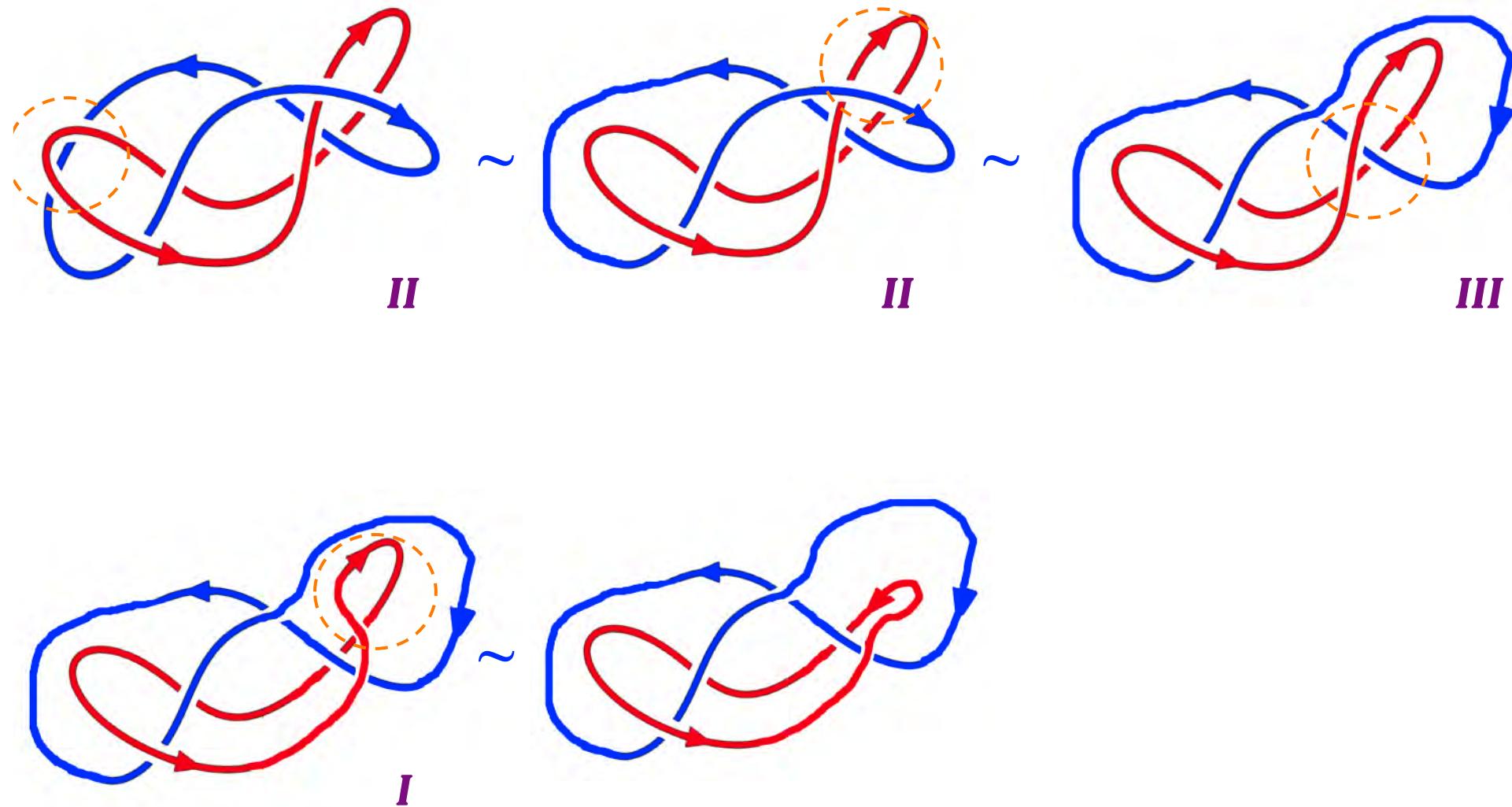
Reidemeister's moves in action



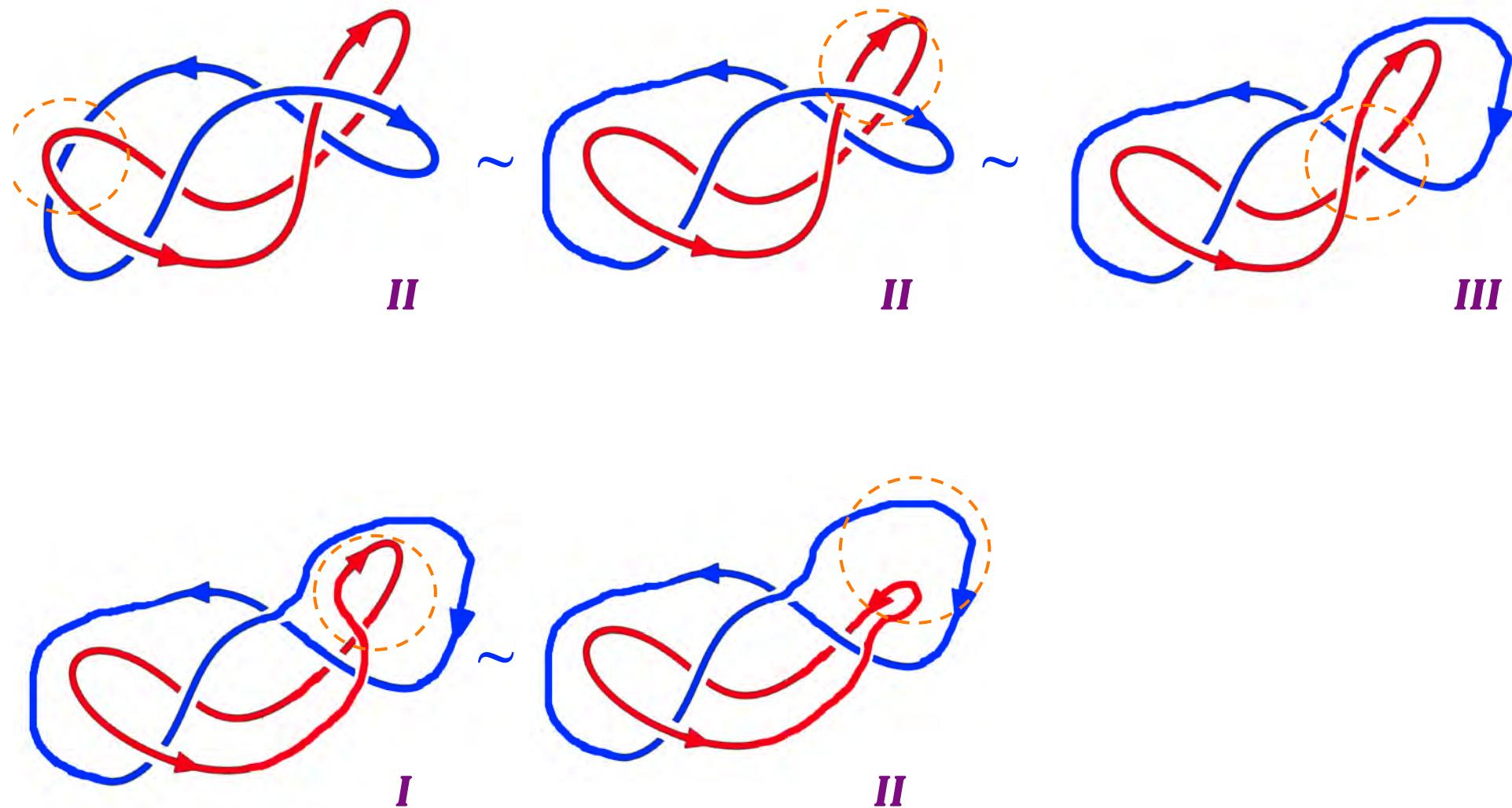
Reidemeister's moves in action



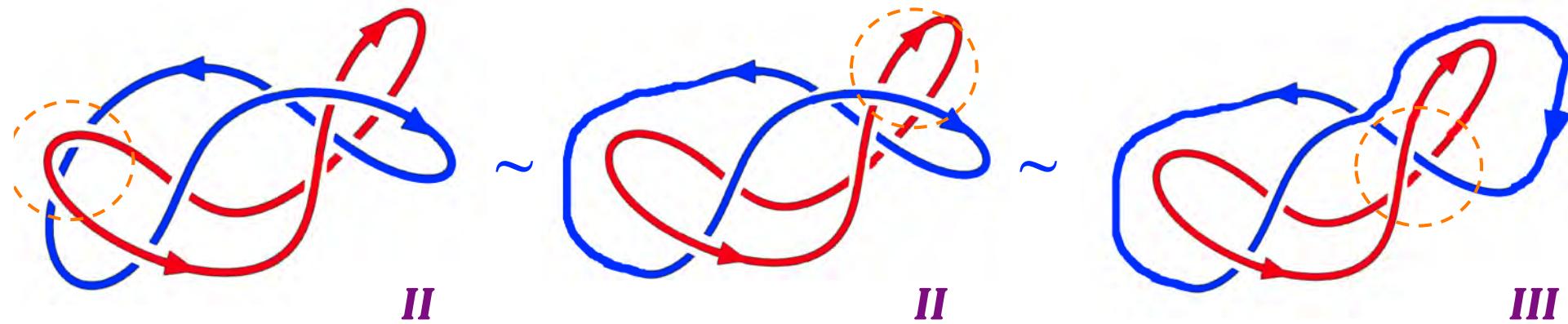
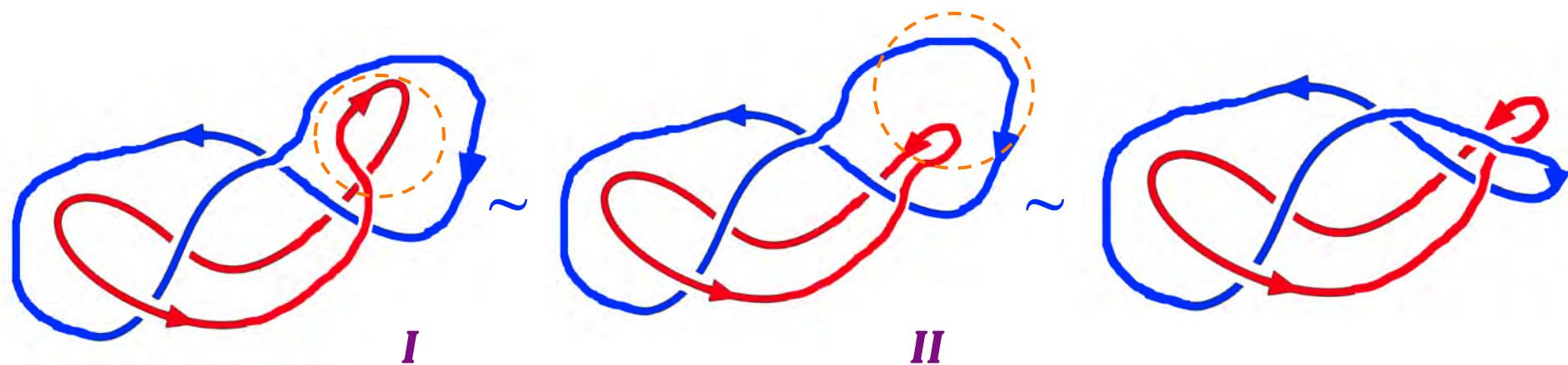
Reidemeister's moves in action



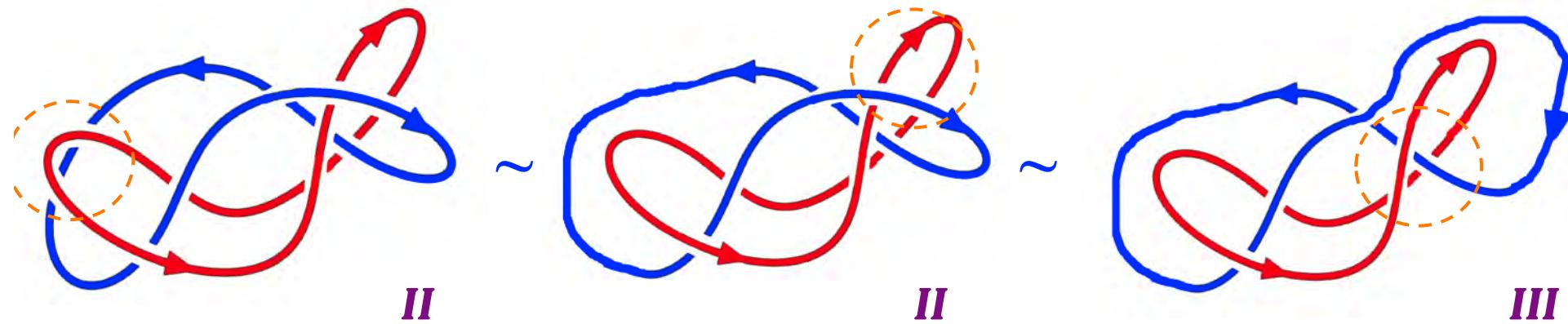
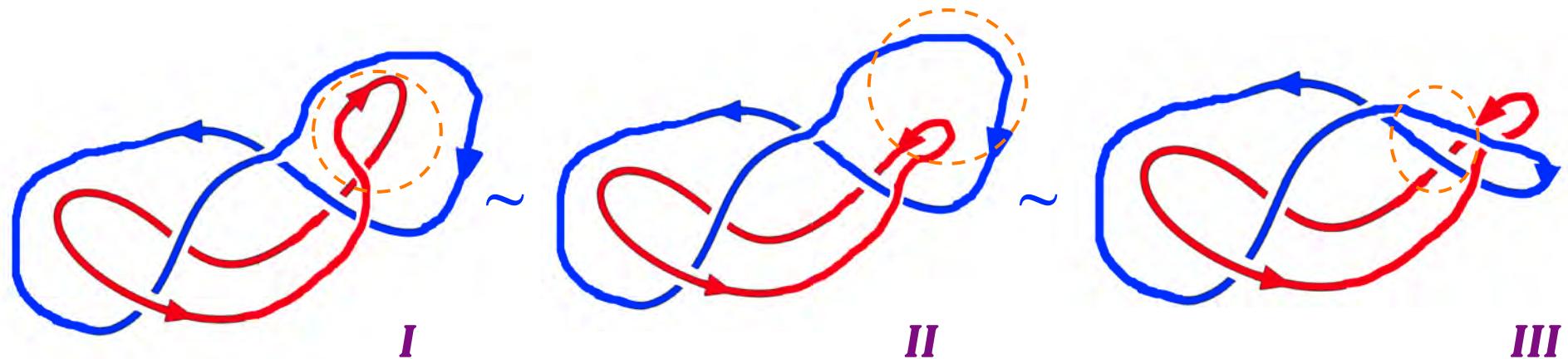
Reidemeister's moves in action



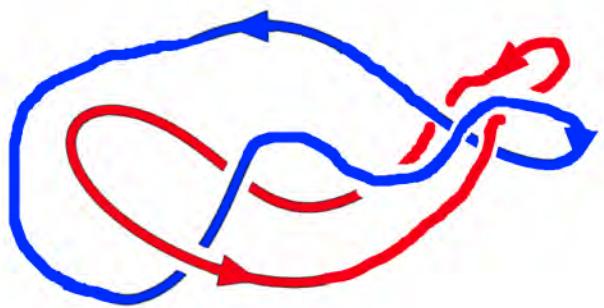
Reidemeister's moves in action



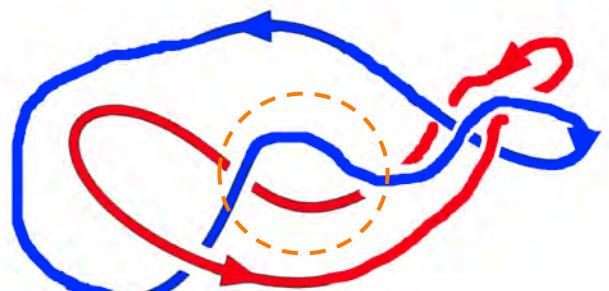
Reidemeister's moves in action



Reidemeister's moves in action (cont.)

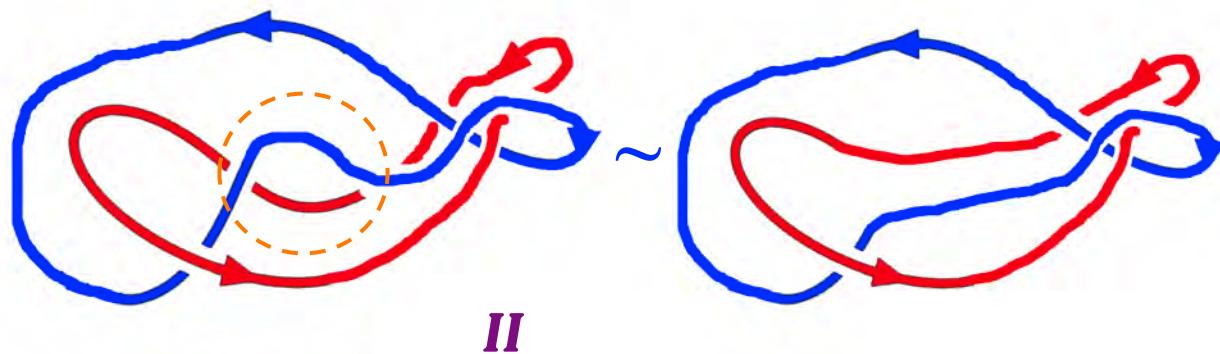


Reidemeister's moves in action (cont.)

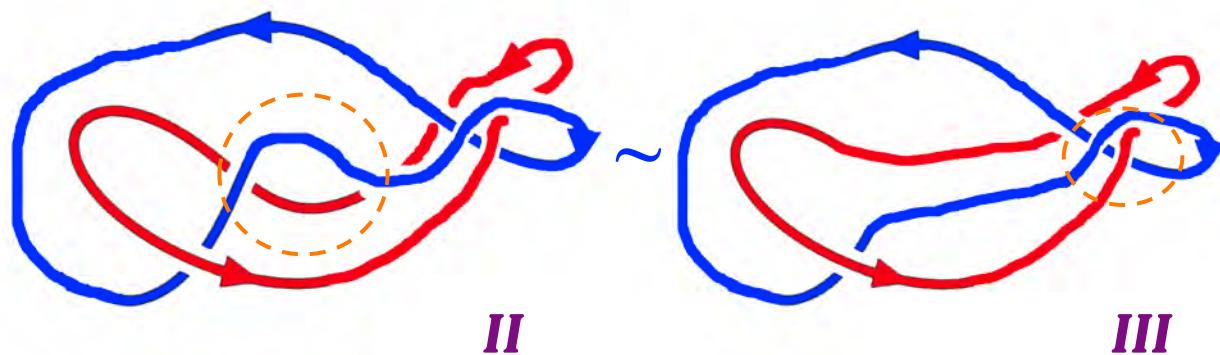


II

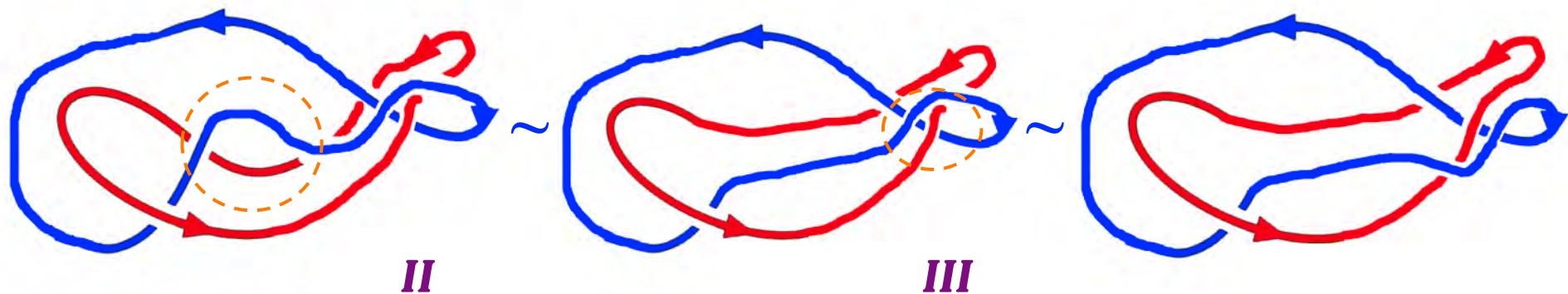
Reidemeister's moves in action (cont.)



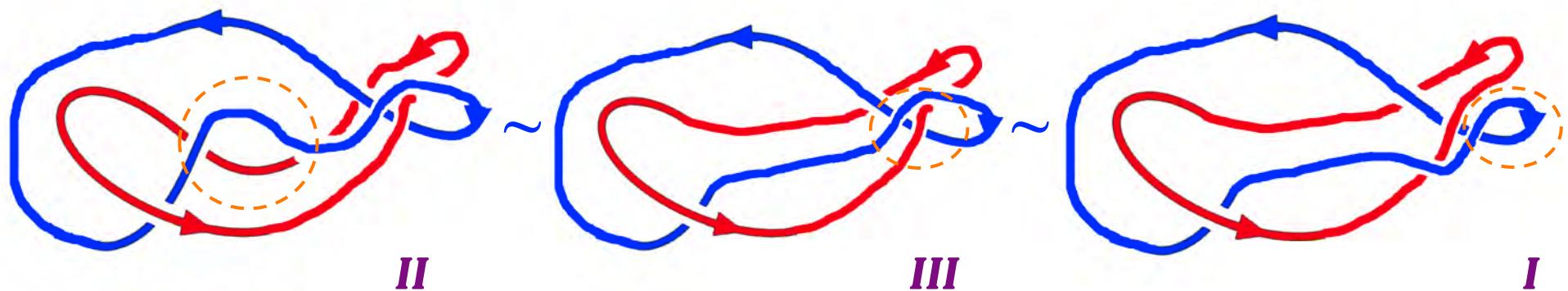
Reidemeister's moves in action (cont.)



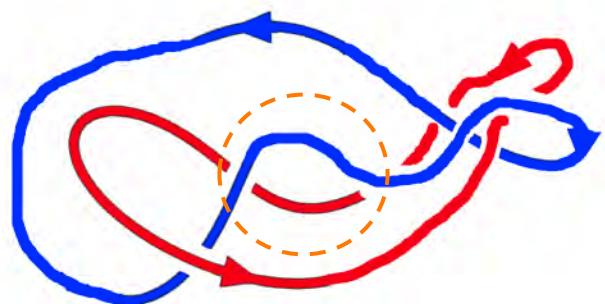
Reidemeister's moves in action (cont.)



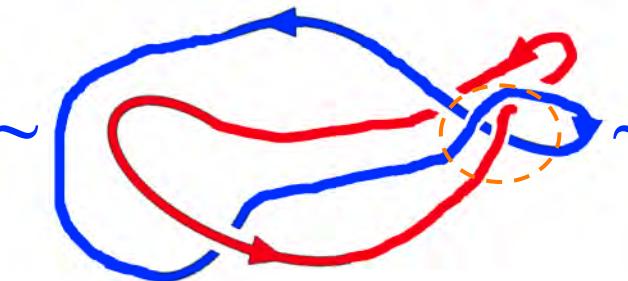
Reidemeister's moves in action (cont.)



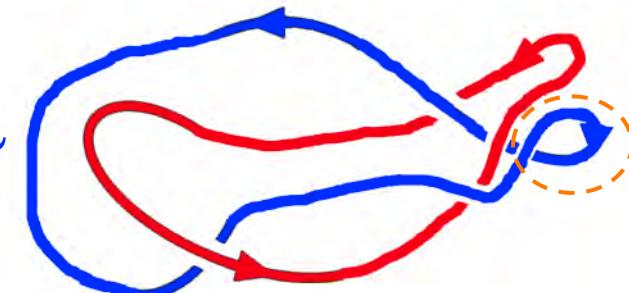
Reidemeister's moves in action (cont.)



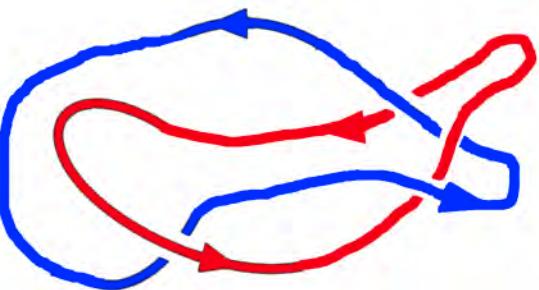
II



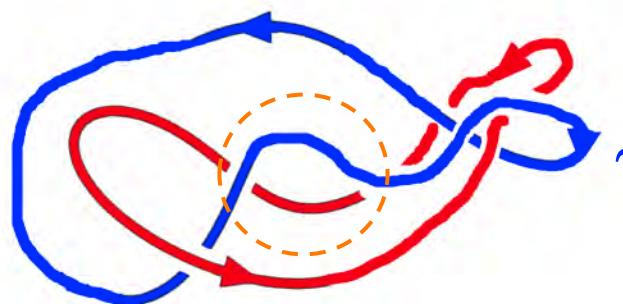
III



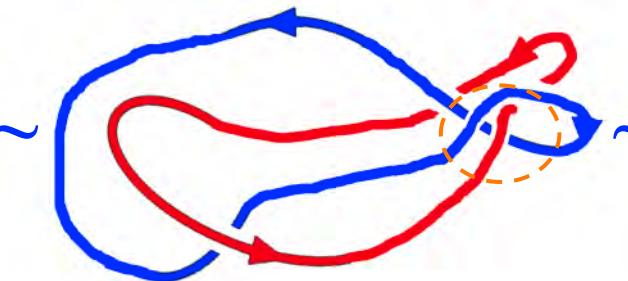
I



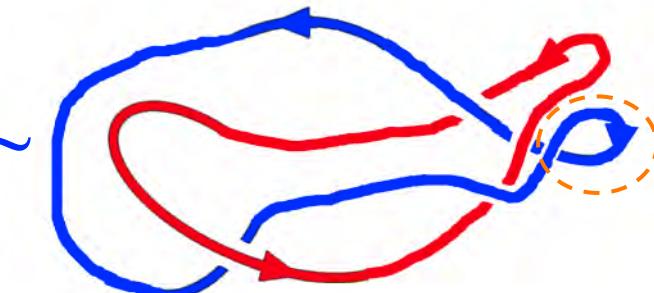
Reidemeister's moves in action (cont.)



II

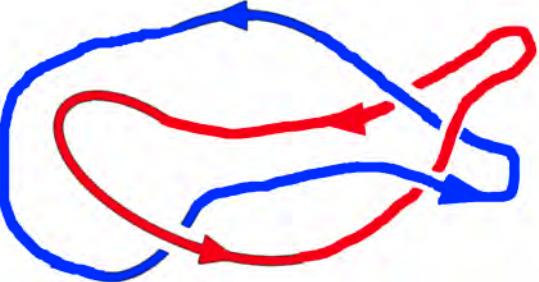


III

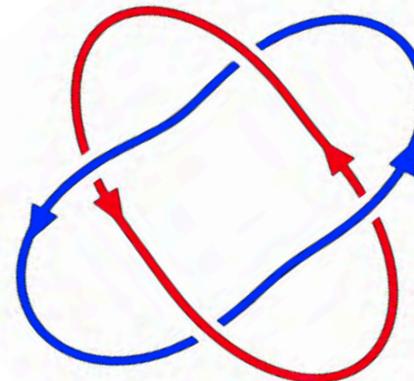


I

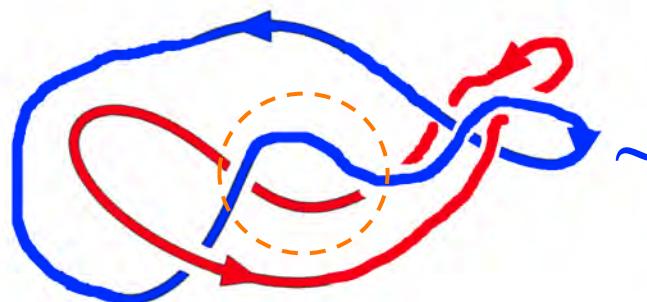
hence



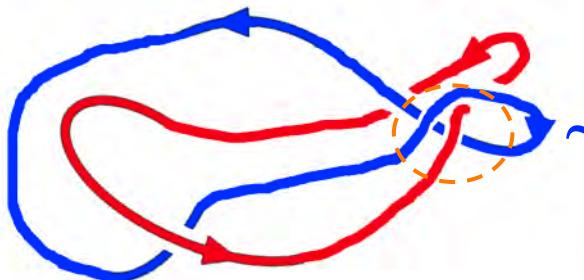
~



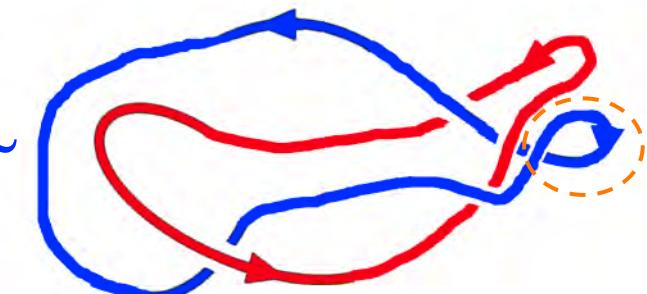
Reidemeister's moves in action (cont.)



II

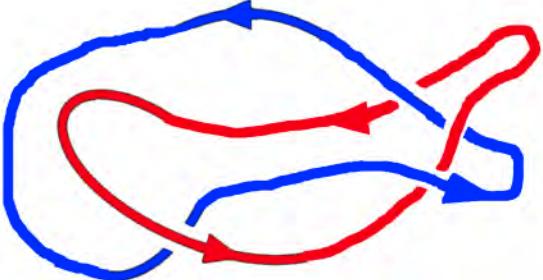


III

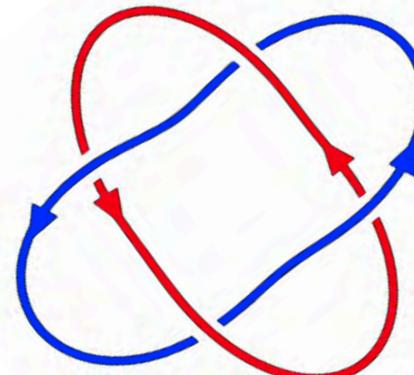


I

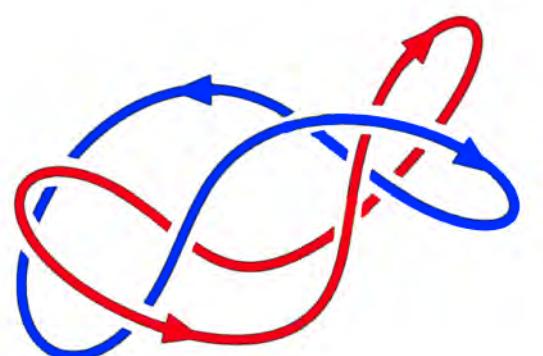
hence



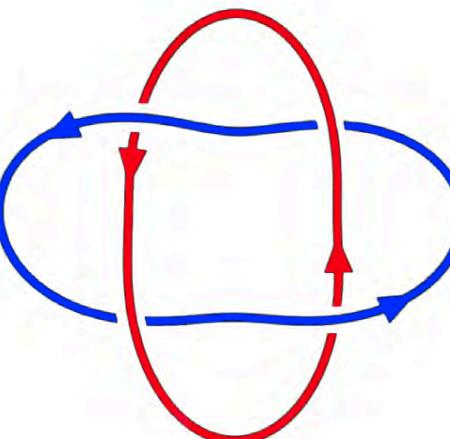
~



We have proved that



~



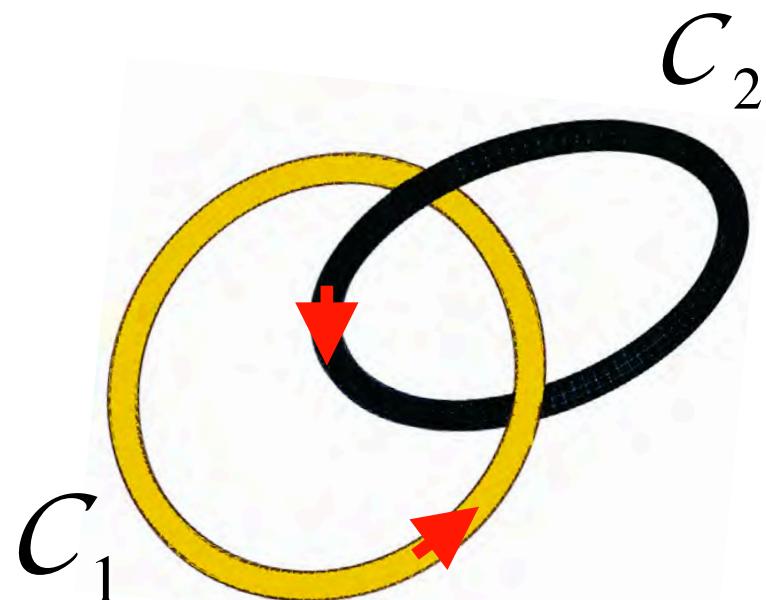
■

End of Lecture 1

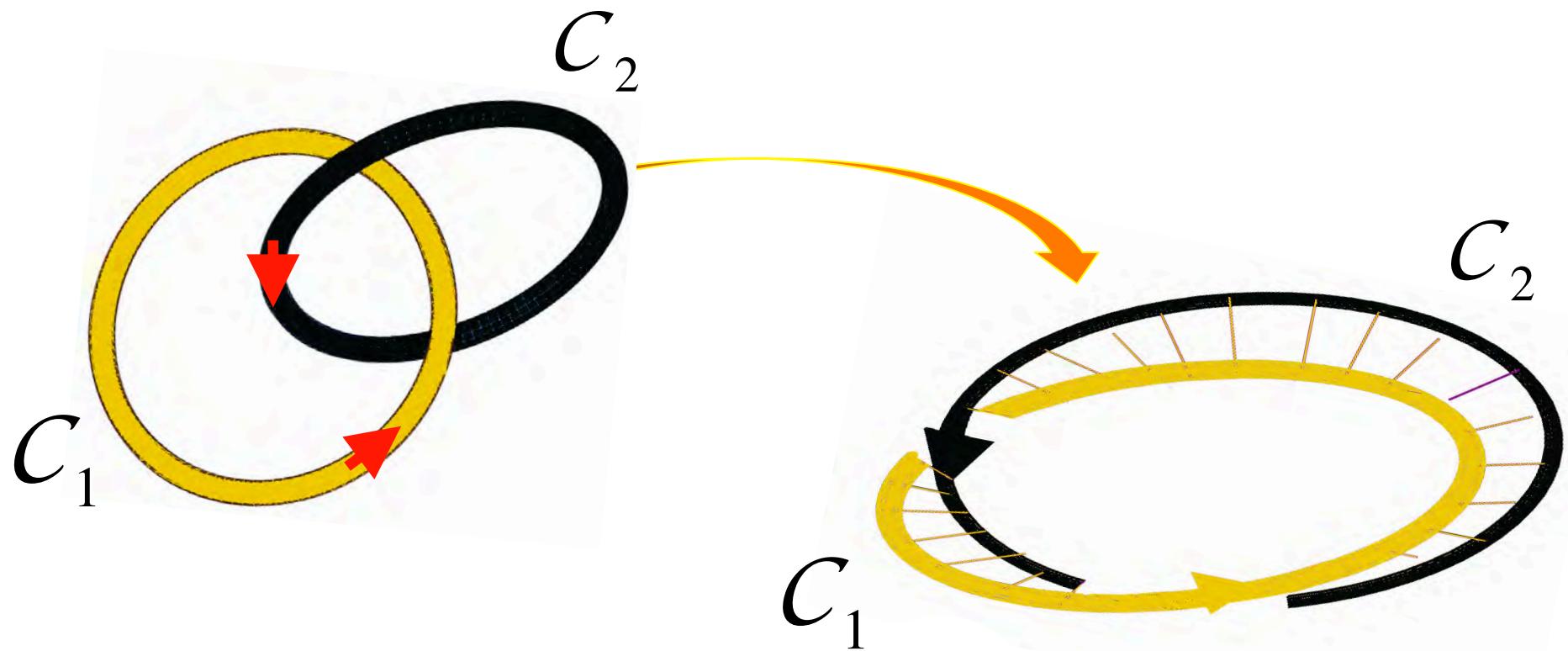
Lecture 2

- *When topology meets geometry:*
 - *Self-linking of a ribbon = Writhe + Twist*
 - *Compactification, relaxation and DNA topology*
- *From knots to braid presentations:*
 - *bridge index and closed braids*
 - *braid index and Seifert surfaces*
 - *Plasma loops on the Sun*
- *The polynomial era:*
 - *From Alexander to Jones and modern times*
 - *Jones' skein relations for knot polynomials*
 - *Examples of computation*
- *Topics of current research:*
 - *Vortex dynamics: HOMFLYPT best quantifier of topological complexity*

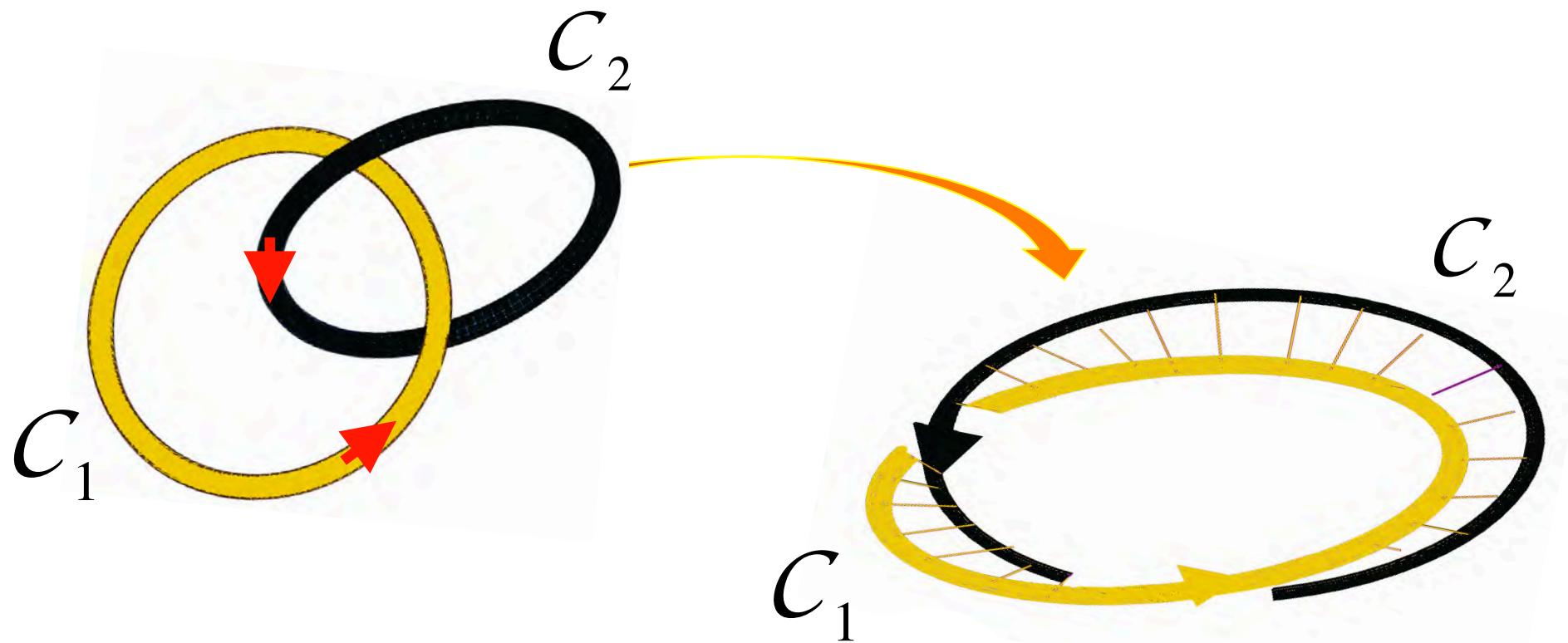
From Gauss linking number to self-linking number



From Gauss linking number to self-linking number



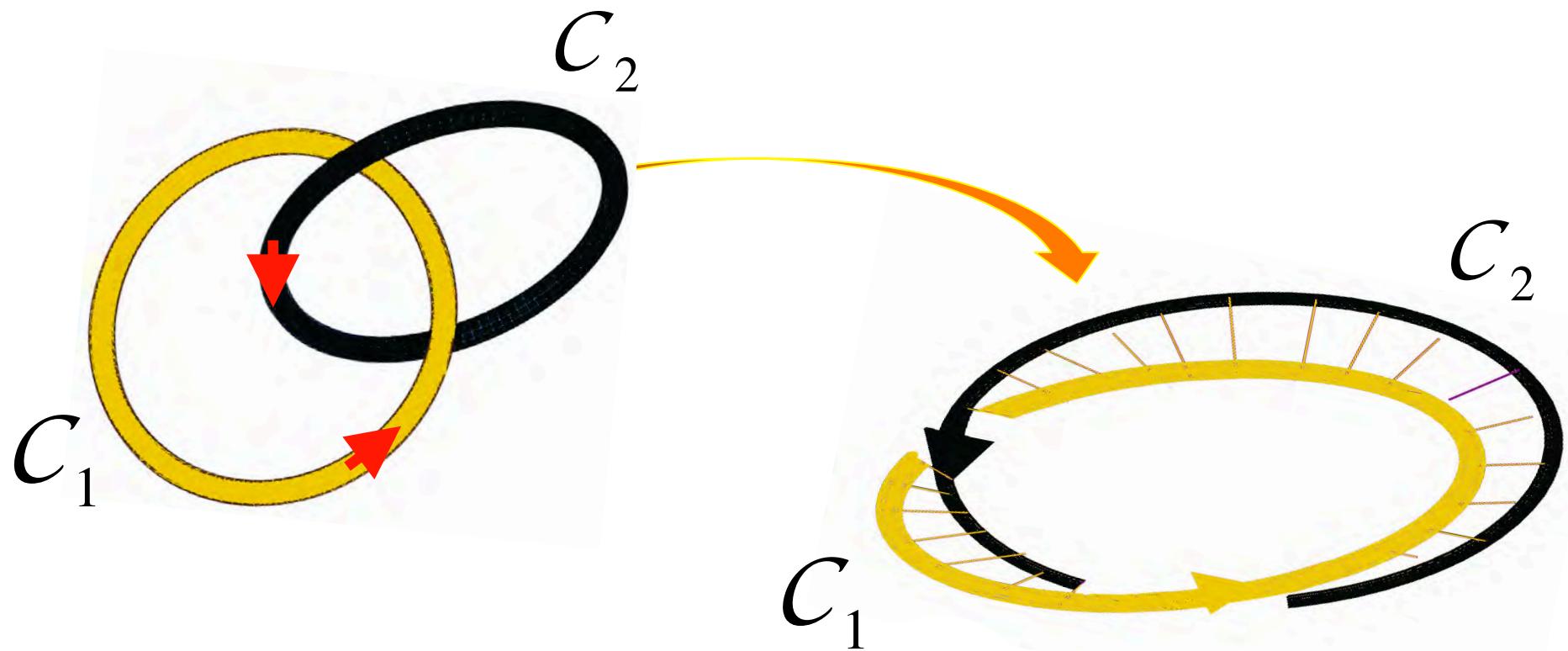
From Gauss linking number to self-linking number



- **Ribbon construction:**

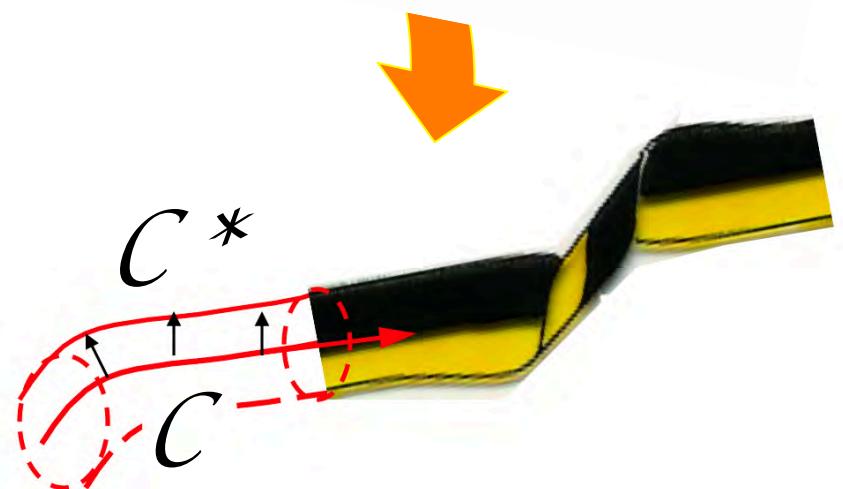
$$\left. \begin{array}{l} C_1 \rightarrow C \\ C_2 \rightarrow C^* \end{array} \right\} \mathcal{R}(C, C^*)$$

From Gauss linking number to self-linking number



- **Ribbon construction:**

$$\left. \begin{array}{l} C_1 \rightarrow C \\ C_2 \rightarrow C^* \end{array} \right\} \mathcal{R}(C, C^*)$$



Self-linking number (Călugăreanu-White invariant)

- ***Self-linking (number):***

$$SL = Wr + Tw$$

Self-linking number (Călugăreanu-White invariant)

- ***Self-linking (number):***

$$SL = Wr + Tw$$

- ***Writhe (writhing number):***

$$Wr = Wr(C)$$

Self-linking number (Călugăreanu-White invariant)

- ***Self-linking (number):***

$$SL = Wr + Tw$$

- ***Writhe (writhing number):***

$$Wr = Wr(C)$$

- ***Twist (total twist number):***

$$Tw = Tw(\mathcal{R})$$

Properties of SL , Wr , and Tw

Properties of SL , Wr , and Tw

- **Linking number** $SL = SL(\mathcal{R})$:

- (i) $SL(\mathcal{R})$ is a topological invariant of the ribbon;**
- (ii) it is an integer;**
- (iii) under cross-switching ($\mp \rightarrow \pm$): $\Delta SL = \pm 2$.**

Properties of SL , Wr , and Tw

- **Linking number** $SL = SL(\mathcal{R})$:

- (i) $SL(\mathcal{R})$ is a topological invariant of the ribbon;**
- (ii) it is an integer;**
- (iii) under cross-switching ($\mp \rightarrow \pm$): $\Delta SL = \pm 2$.**

- **Writhing number** $Wr = Wr(C)$:

- (i) $Wr(C)$ is a geometric measure of the curve C ;**
- (ii) it is a conformational invariant;**
- (iii) under cross-switching ($\mp \rightarrow \pm$): $\Delta SL = \pm 2$.**

Properties of SL , Wr , and Tw

- **Linking number** $SL = SL(\mathcal{R})$:

- (i) $SL(\mathcal{R})$ is a topological invariant of the ribbon;
- (ii) it is an integer;
- (iii) under cross-switching ($\mp \rightarrow \pm$): $\Delta SL = \pm 2$.

- **Writhing number** $Wr = Wr(C)$:

- (i) $Wr(C)$ is a geometric measure of the curve C ;
- (ii) it is a conformational invariant;
- (iii) under cross-switching ($\mp \rightarrow \pm$): $\Delta SL = \pm 2$.

- **Total twist number** $Tw = Tw(\mathcal{R})$:

- (i) $Tw(\mathcal{R})$ is a geometric measure of the ribbon $\mathcal{R}(C, C^*)$;
- (ii) it is a conformational invariant;
- (iii) it is additive: $Tw(\mathcal{A}) + Tw(\mathcal{B}) = Tw(\mathcal{A} + \mathcal{B})$.

Zero-framing

$$SL = Wr + Tw = 0$$

\iff

$$Wr = -Tw$$

Zero-framing

$$SL = Wr + Tw = 0$$

\Leftrightarrow

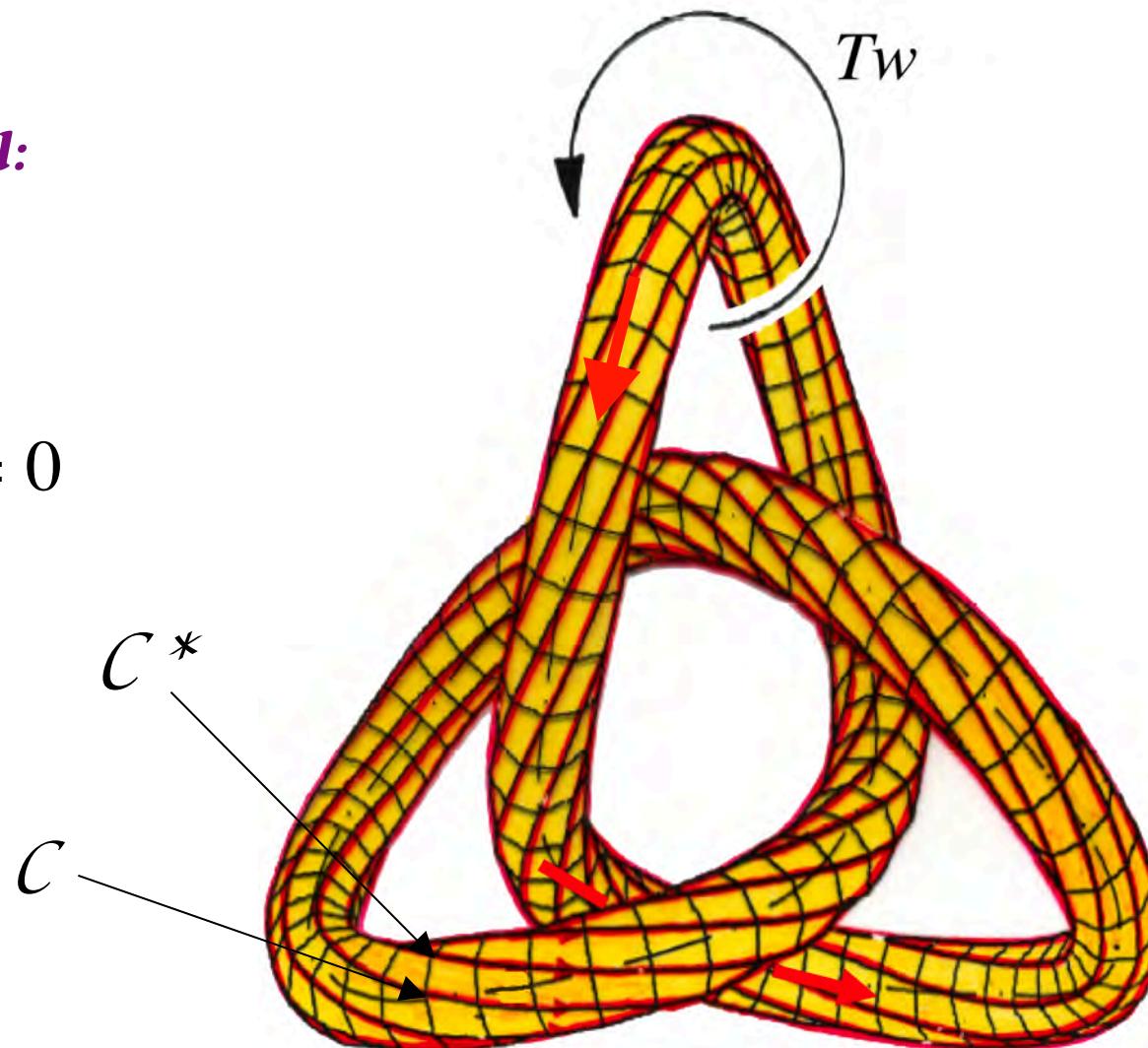
$$Wr = -Tw$$

- **Zero-framed trefoil:**

$$Wr = -3$$

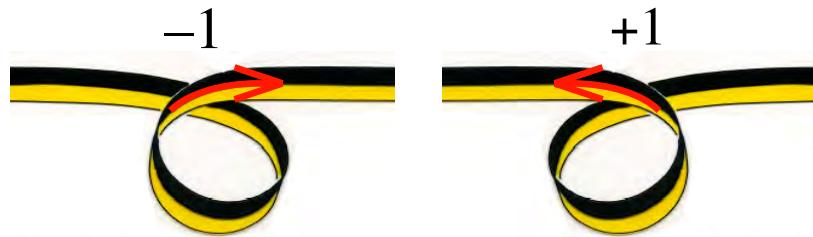
$$Tw = +3$$

$$SL = Wr + Tw = 0$$

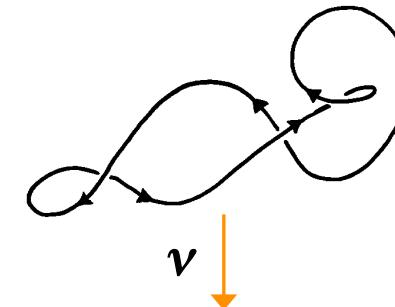
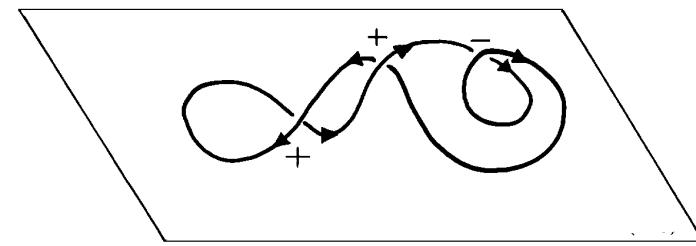


Interpretation of writhe in terms of signed crossings

Crossing sign convention again:

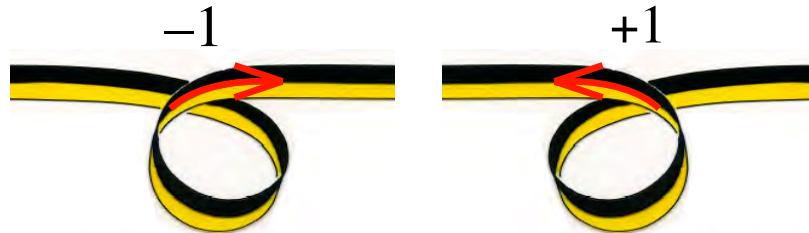


$$Wr = \left\langle \sum_r \varepsilon_r \right\rangle$$

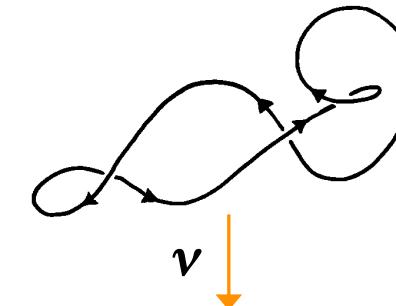
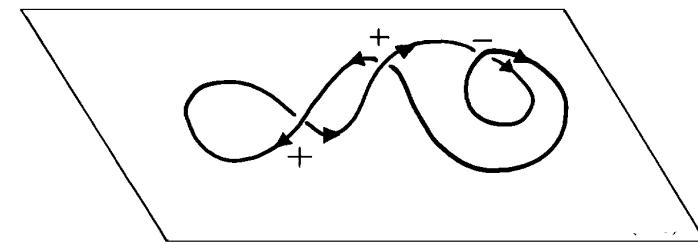
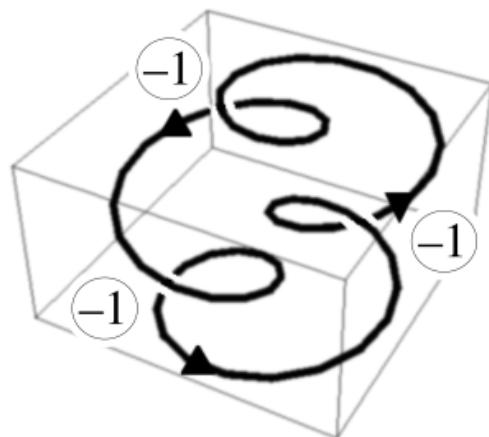


Interpretation of writhe in terms of signed crossings

Crossing sign convention again:



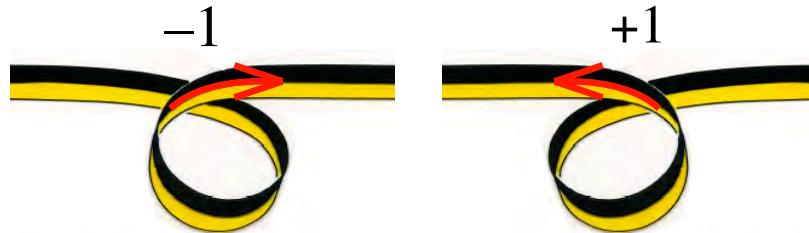
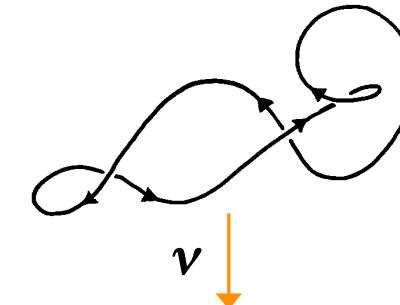
$$Wr = \left\langle \sum_r \varepsilon_r \right\rangle$$



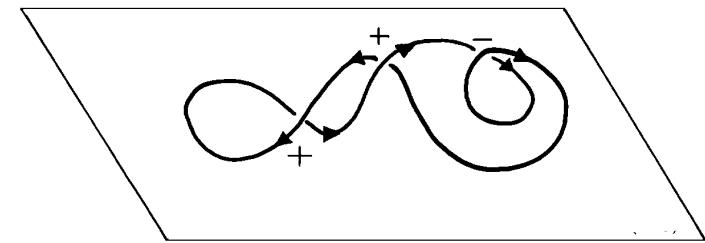
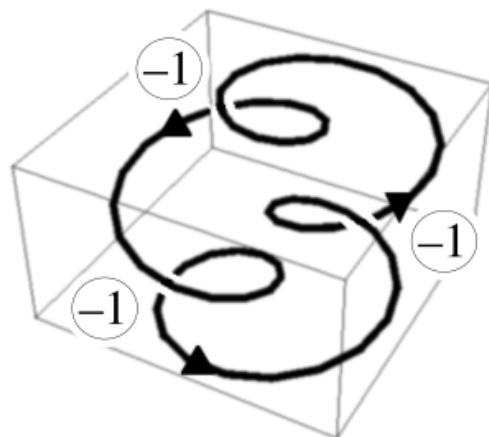
$$Wr = -3$$

Interpretation of writhe in terms of signed crossings

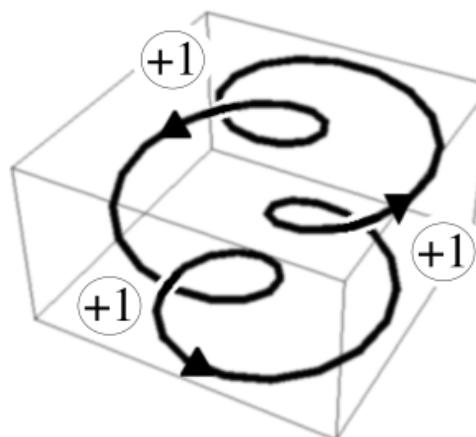
Crossing sign convention again:



$$Wr = \left\langle \sum_r \varepsilon_r \right\rangle$$



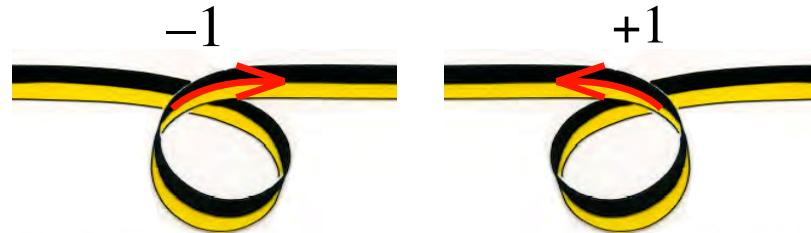
$$Wr = -3$$



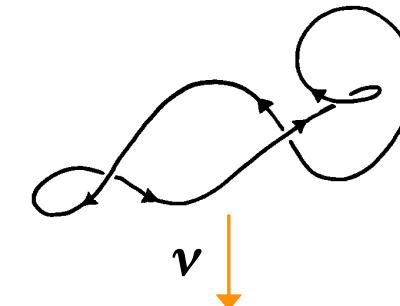
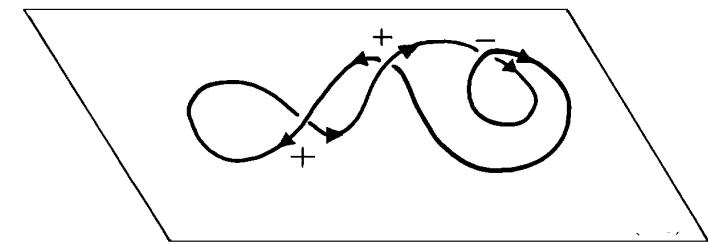
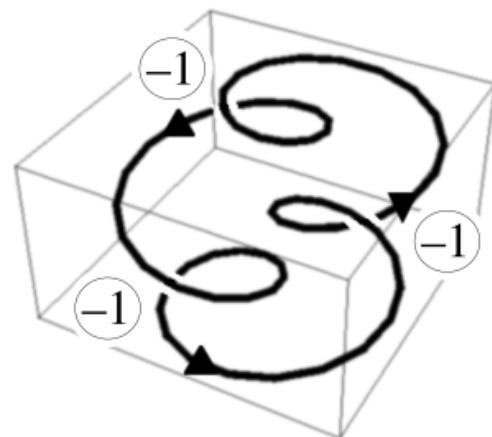
$$Wr = +3$$

Interpretation of writhe in terms of signed crossings

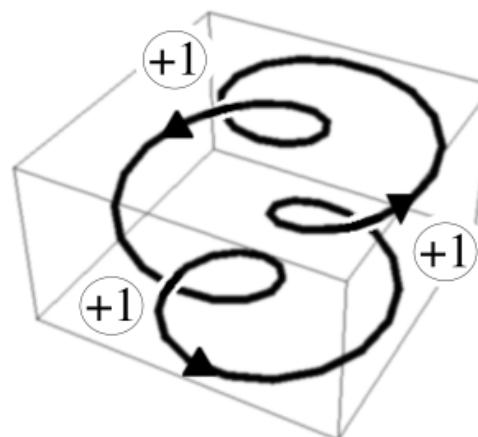
Crossing sign convention again:



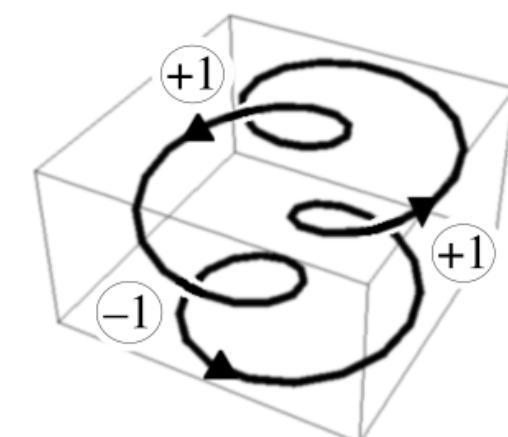
$$Wr = \left\langle \sum_r \varepsilon_r \right\rangle$$



$$Wr = -3$$

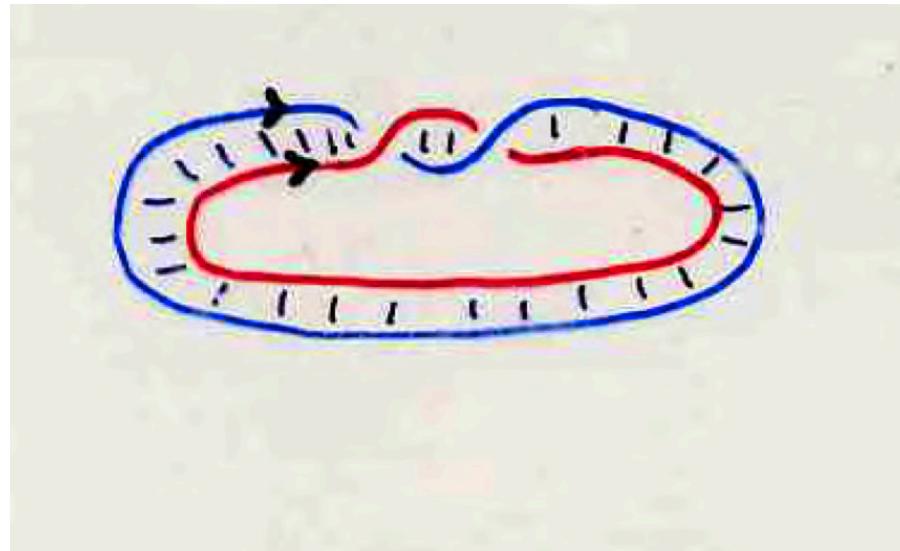


$$Wr = +3$$



$$Wr = +1$$

A simple example

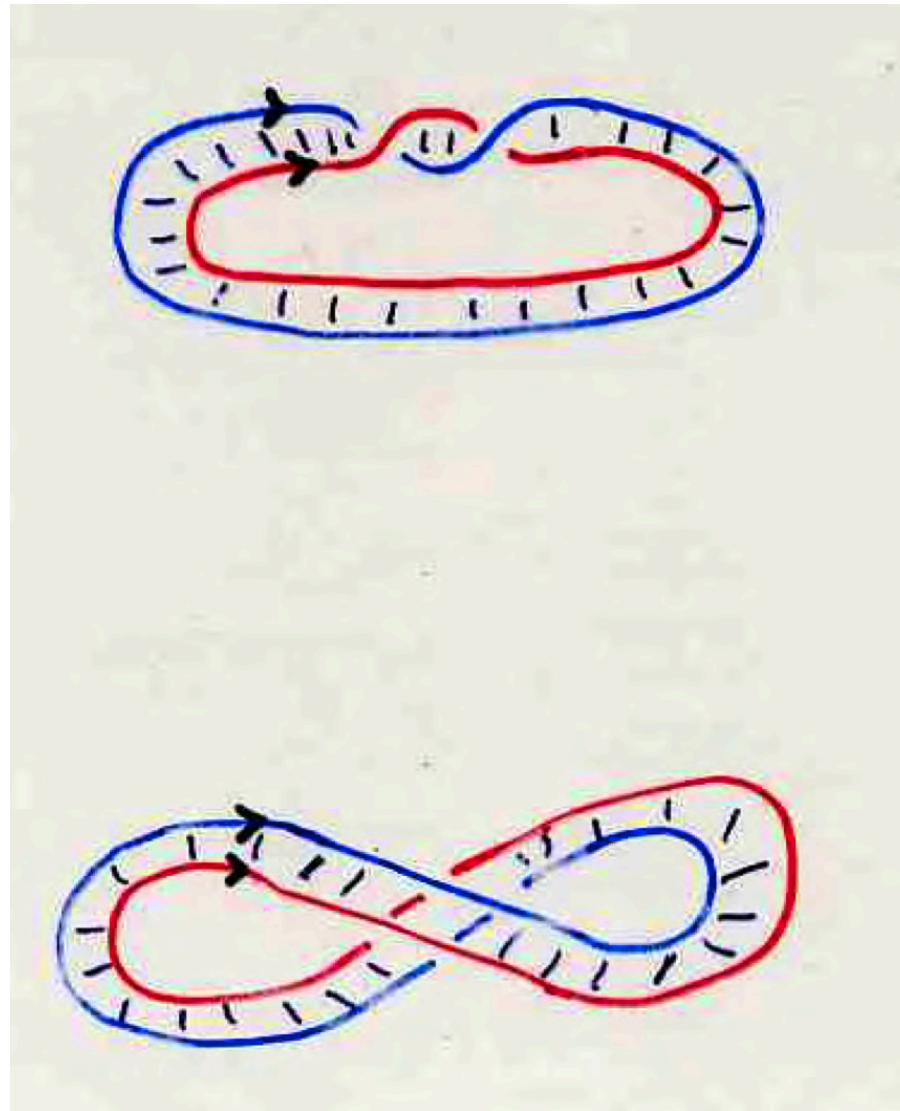


$$Wr = -0$$

$$Tw = -1$$

$$SL = -1$$

A simple example



$$Wr = -0$$

$$Tw = -1$$

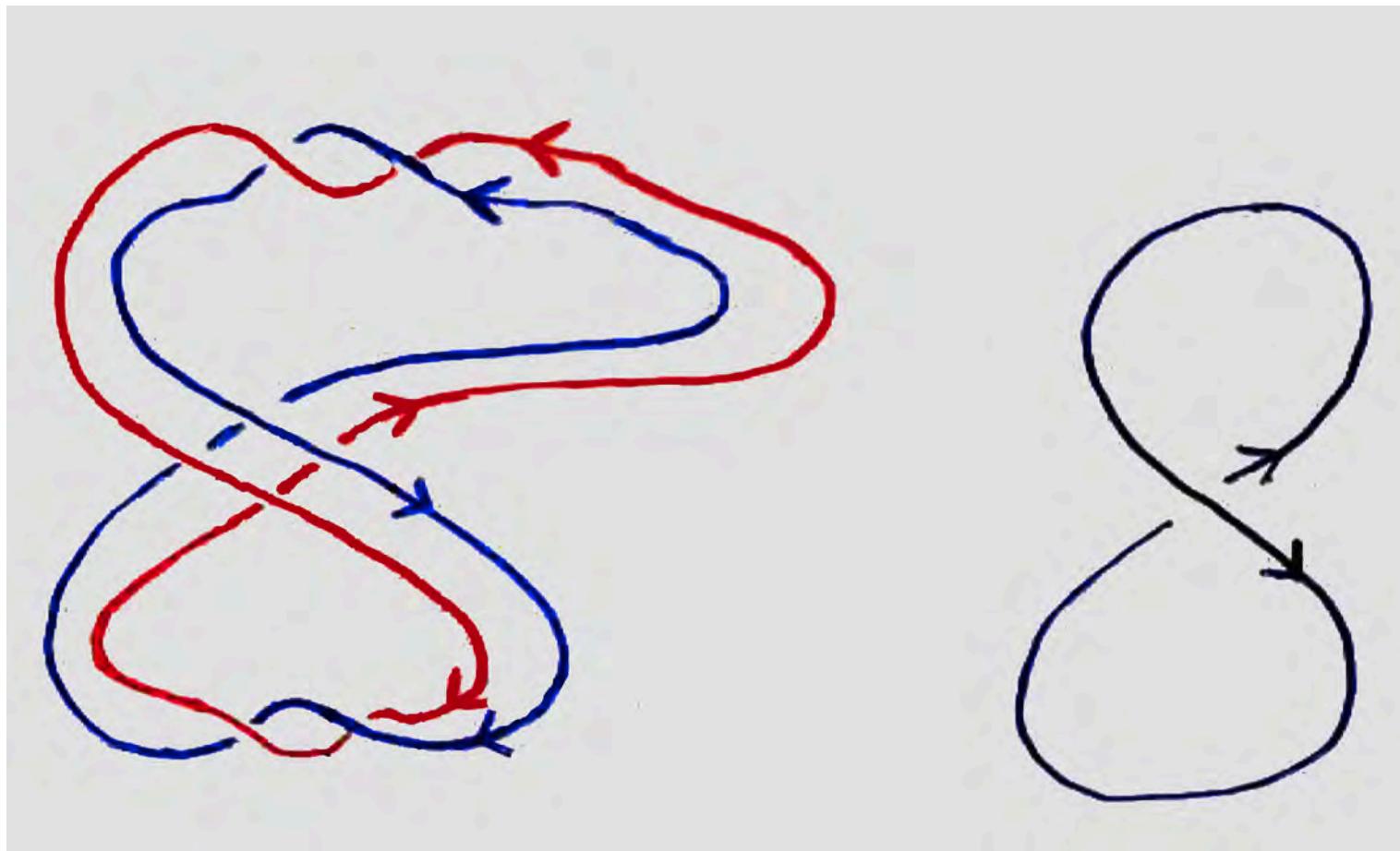
$$SL = -1$$

$$Wr = -1$$

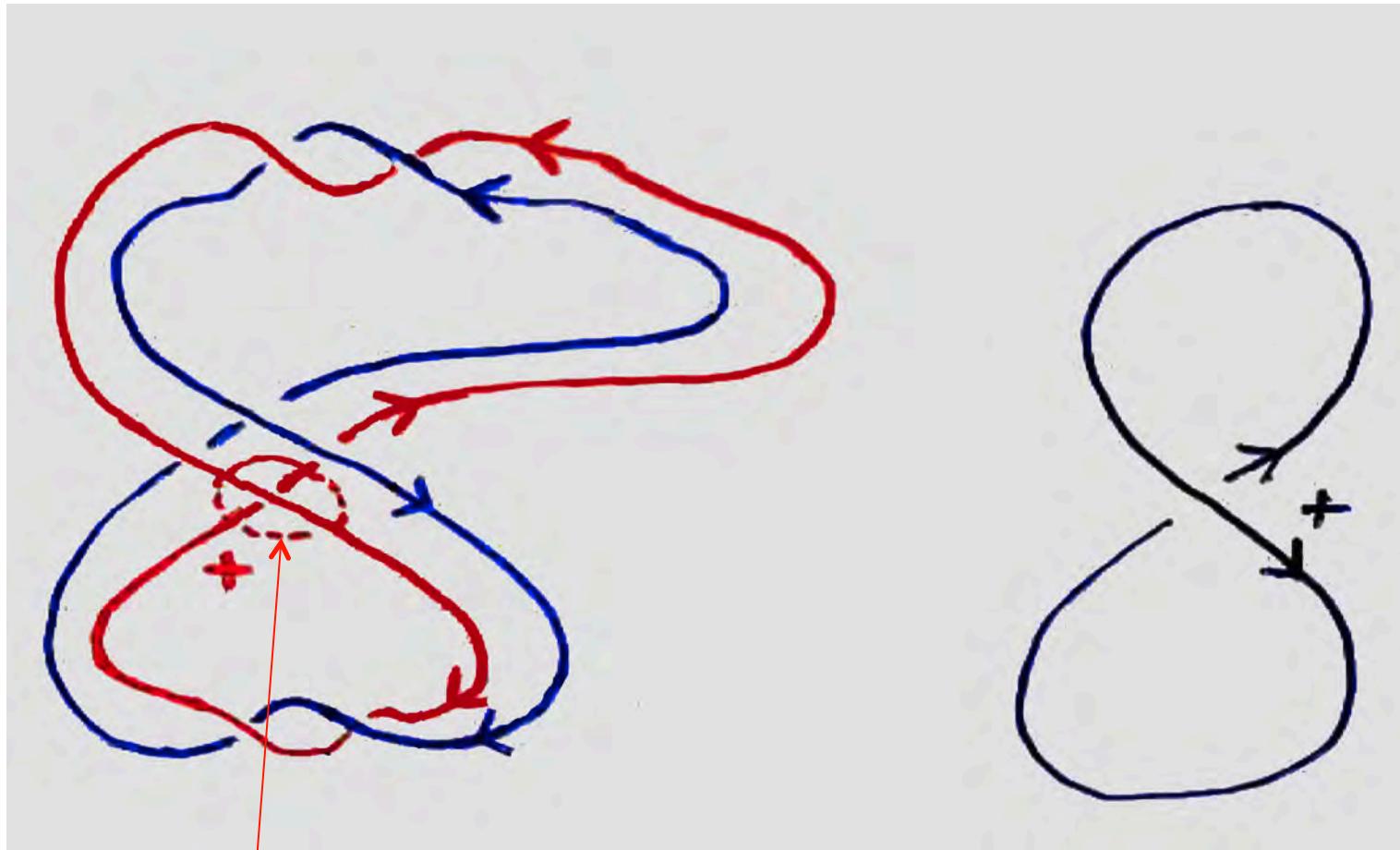
$$Tw = -0$$

$$SL = -1$$

Let's do some homework

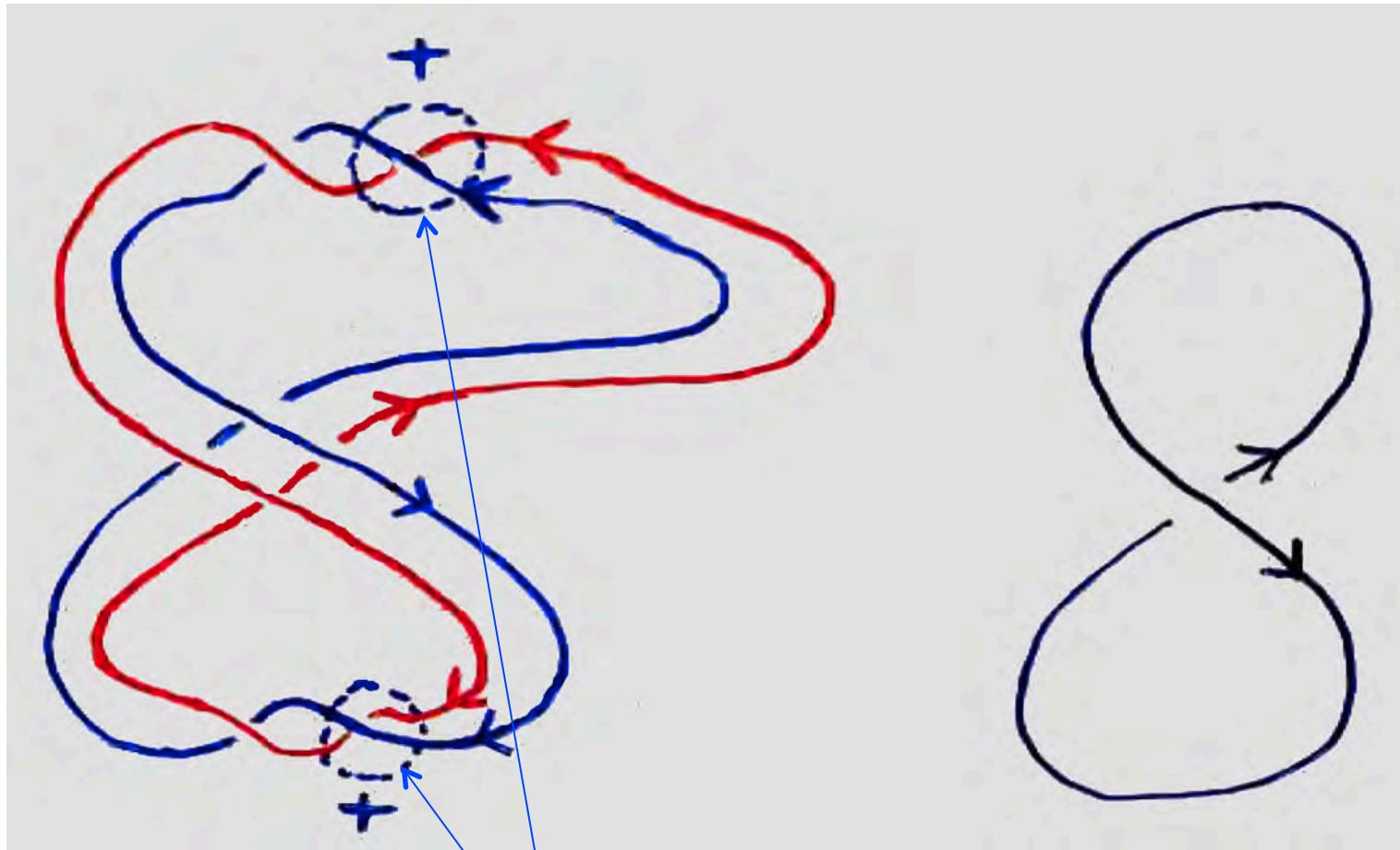


Let's do some homework



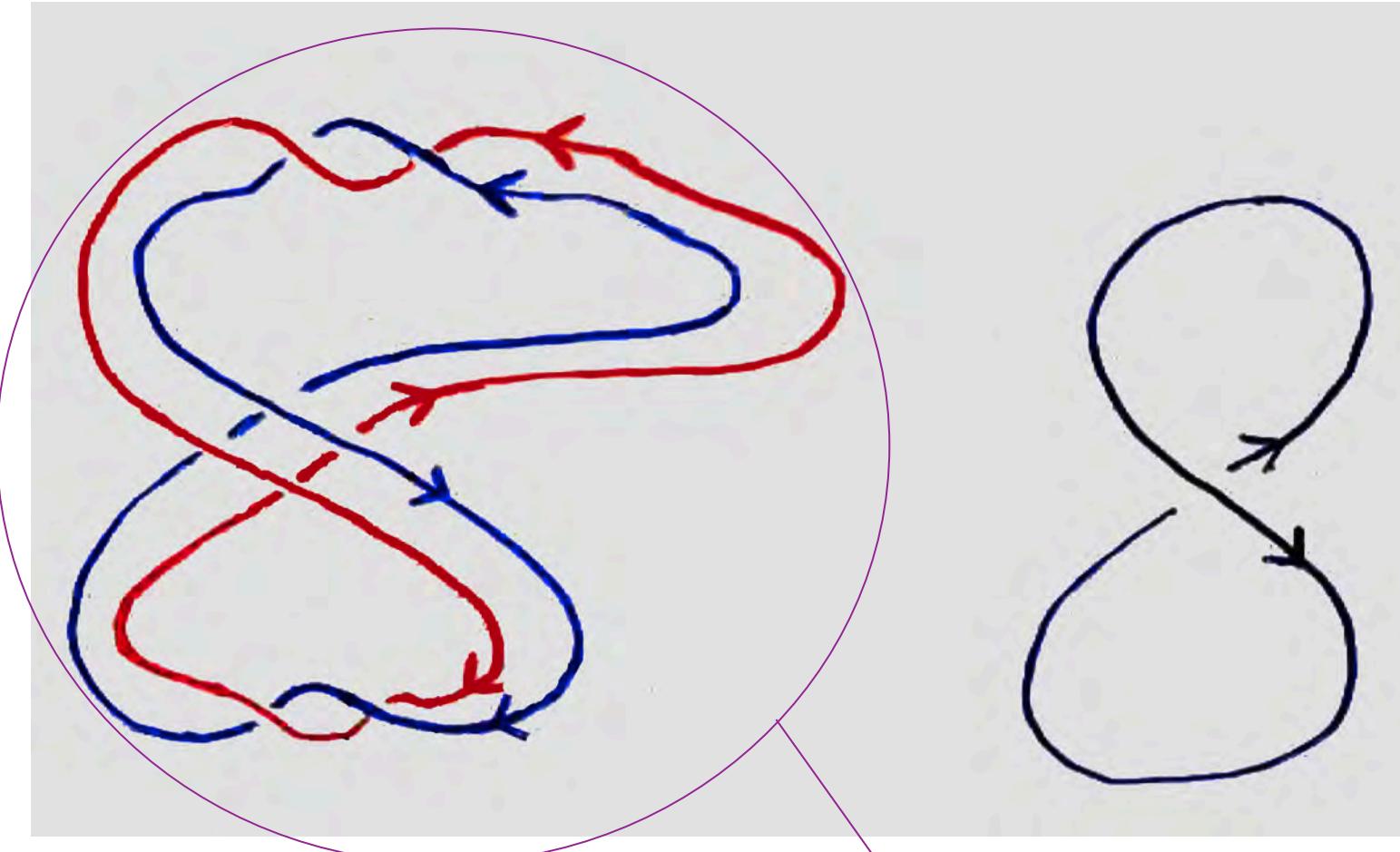
$$Wr = +1$$

Let's do some homework



$$\underline{Wr = +1}, \underline{Tw = +2}$$

Let's do some homework

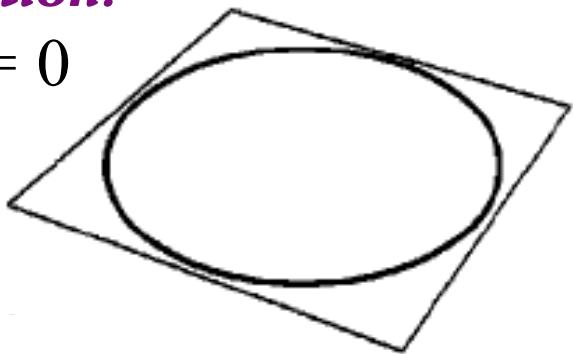


$$\underline{Wr = +1}, \quad \underline{Tw = +2} \Rightarrow \underline{SL = +3}$$

First remark: compactification in space

initial configuration:

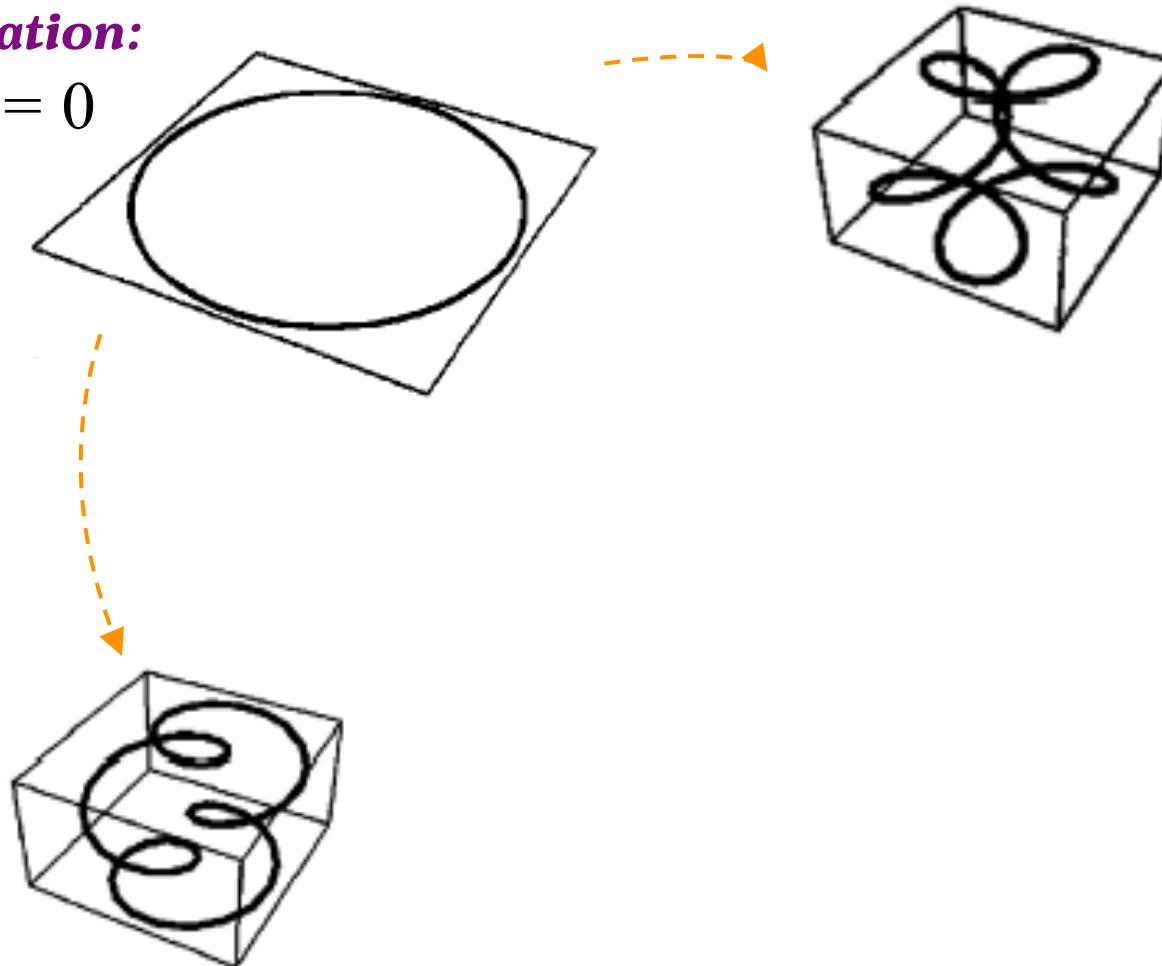
$$SL = Tw, Wr = 0$$



First remark: compactification in space

initial configuration:

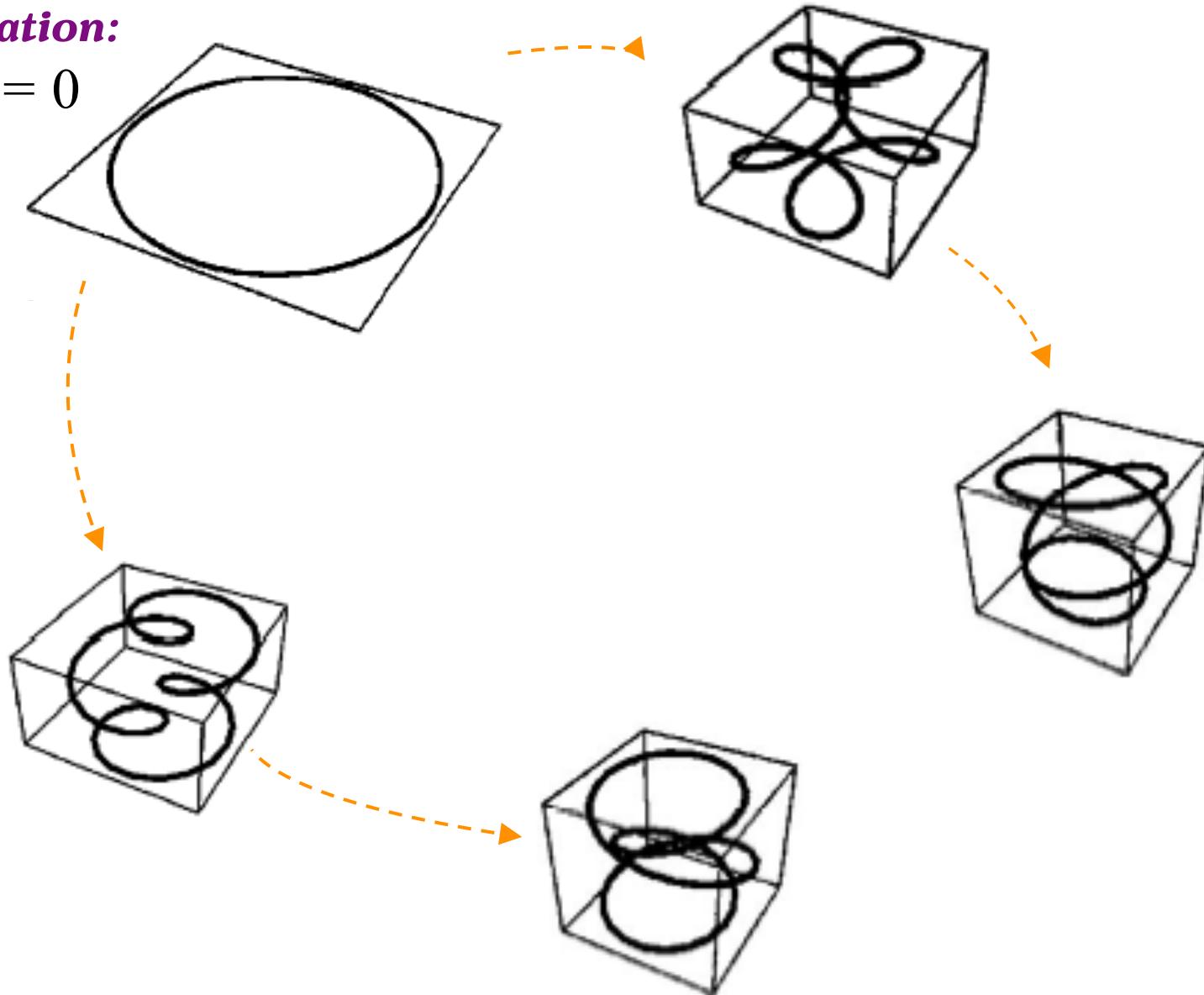
$$SL = Tw, Wr = 0$$



First remark: compactification in space

initial configuration:

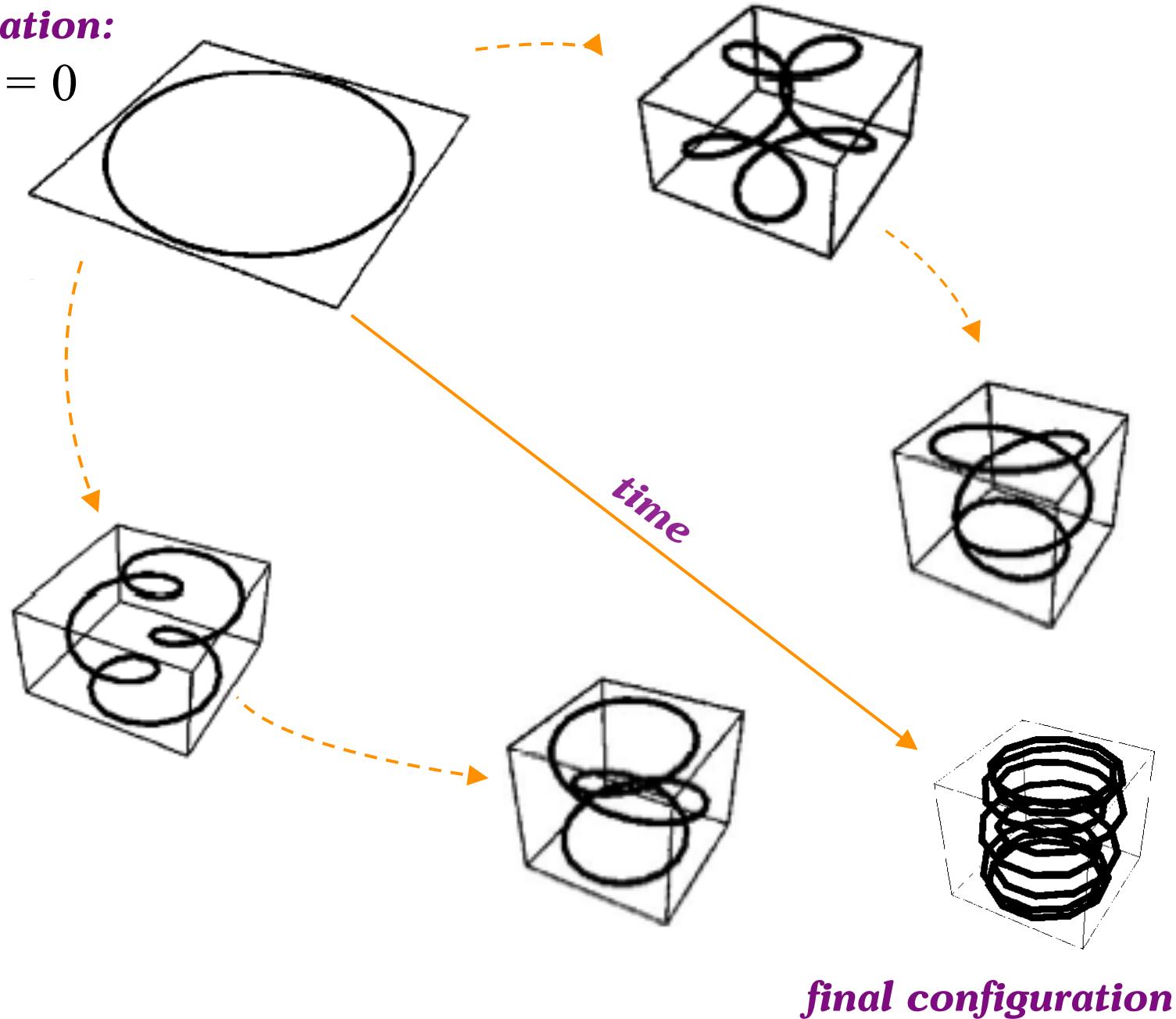
$$SL = Tw, Wr = 0$$



First remark: compactification in space

initial configuration:

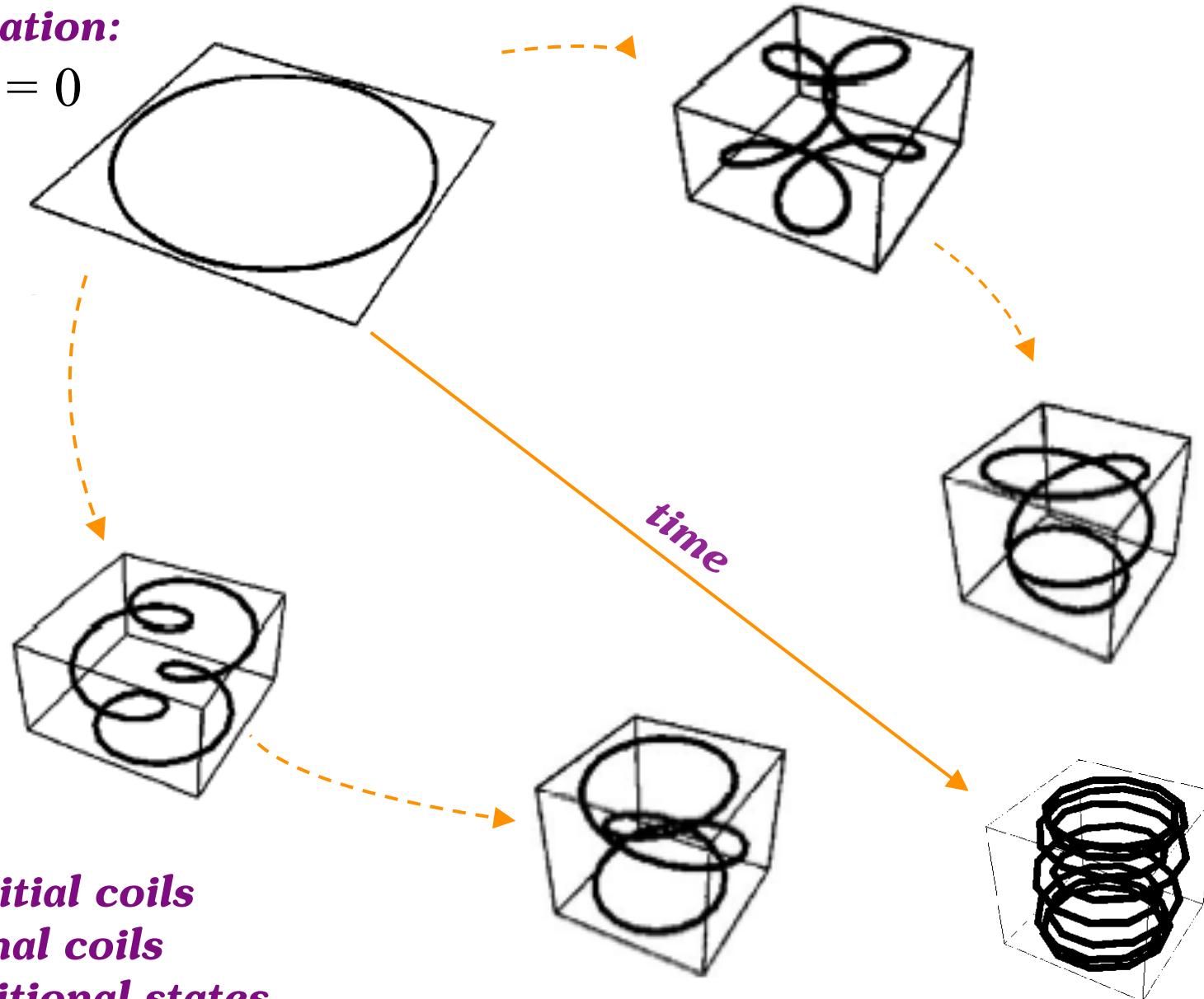
$$SL = Tw, Wr = 0$$



First remark: compactification in space

initial configuration:

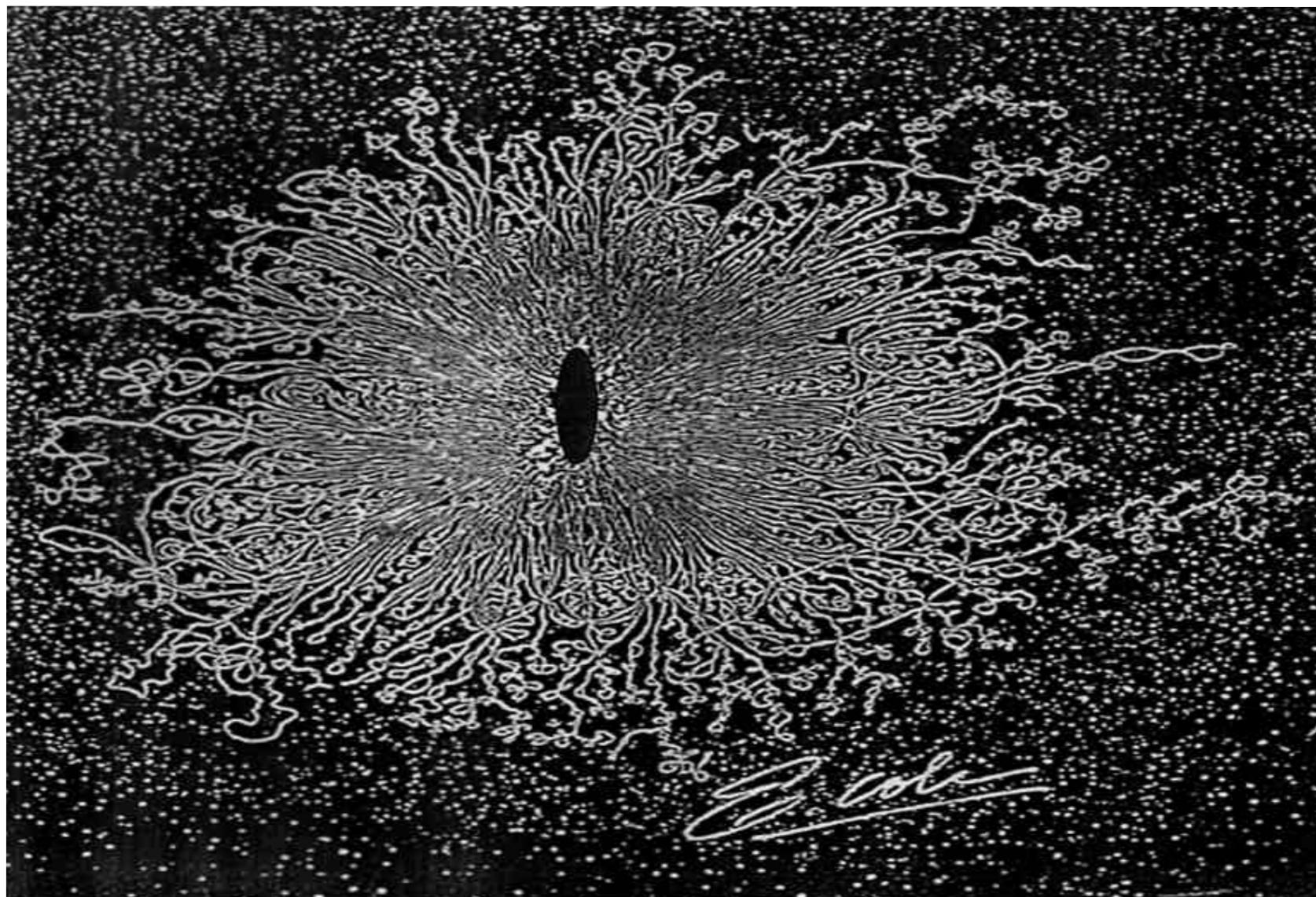
$$SL = Tw, Wr = 0$$



- **number of initial coils**
- **number of final coils**
- **type of transitional states**
- **writhing rates and energetics**

final configuration

DNA is crowded in the cell



Second remark: relaxation of elastic energy

- ***Supercoiling as transition from T_W to W_r , under conservation of SL :***

Second remark: relaxation of elastic energy

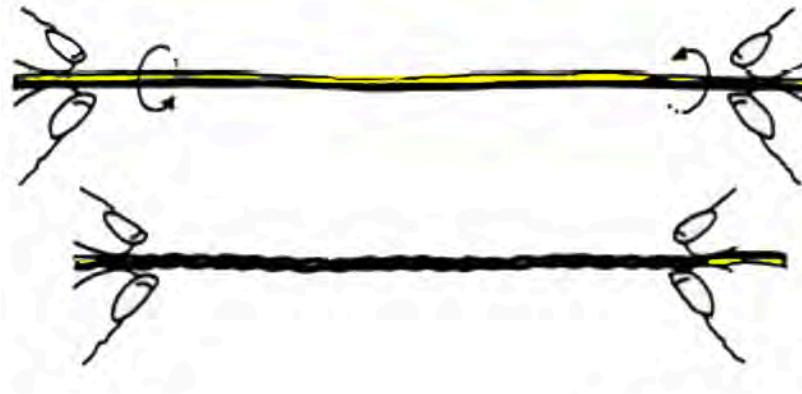
- **Supercoiling as transition from T_W to W_r , under conservation of SL :**

(i) keep straight and twist,

Second remark: relaxation of elastic energy

- *Supercoiling as transition from T_W to W_r , under conservation of SL :*

(i) keep straight and twist,

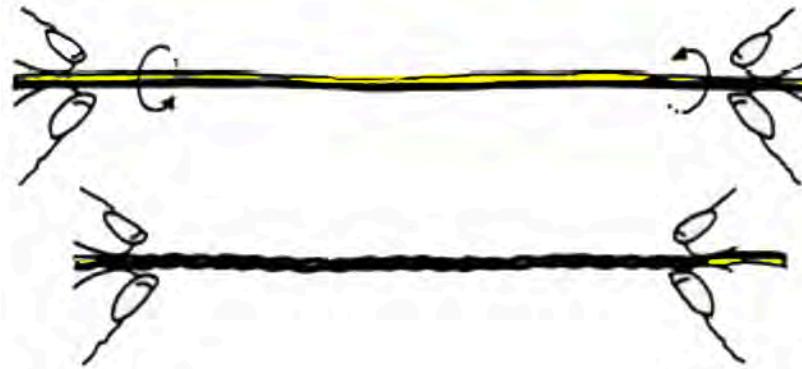


(ii) pull tight,

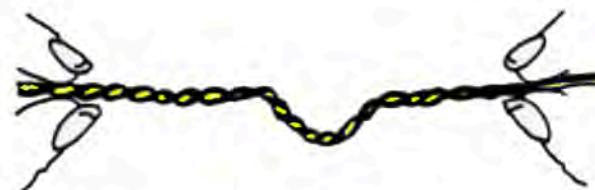
Second remark: relaxation of elastic energy

- Supercoiling as transition from T_W to W_r , under conservation of SL :

(i) **keep straight and twist,**



(ii) **pull tight,**

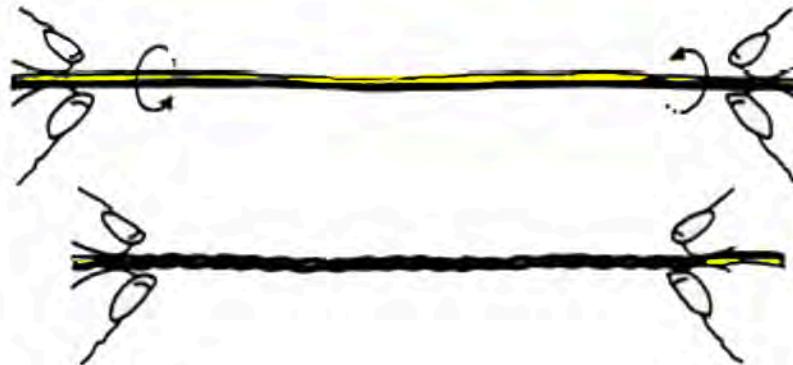


(iii) **let shrink,**

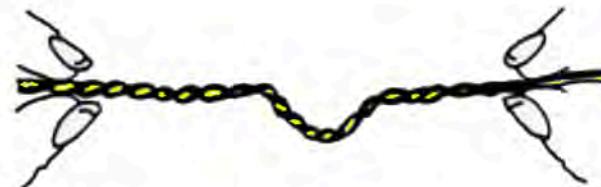
Second remark: relaxation of elastic energy

- Supercoiling as transition from T_W to W_r , under conservation of SL :

(i) **keep straight and twist,**



(ii) **pull tight,**



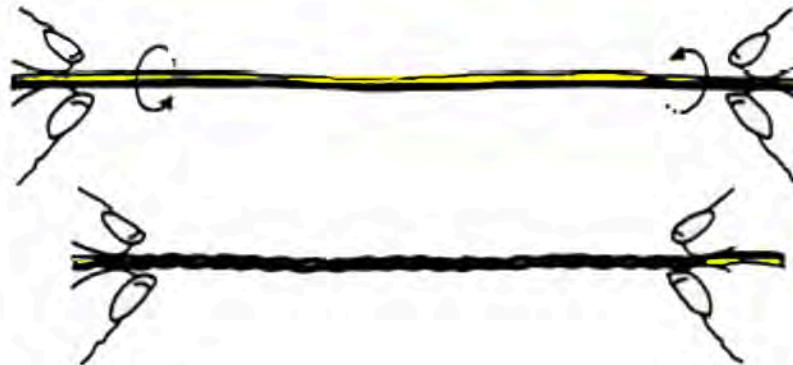
(iii) **let shrink,**

(iv) ... **and shrink,**

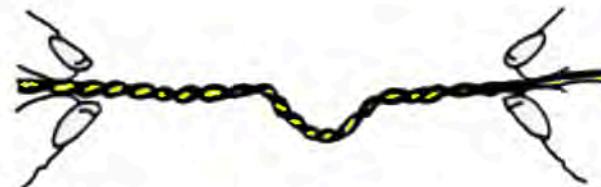
Second remark: relaxation of elastic energy

- Supercoiling as transition from T_W to W_r , under conservation of SL :

(i) **keep straight and twist,**

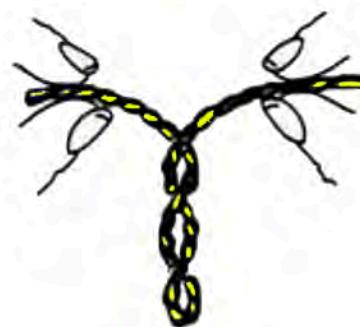


(ii) **pull tight,**



(iii) **let shrink,**

(iv) ... **and shrink,**

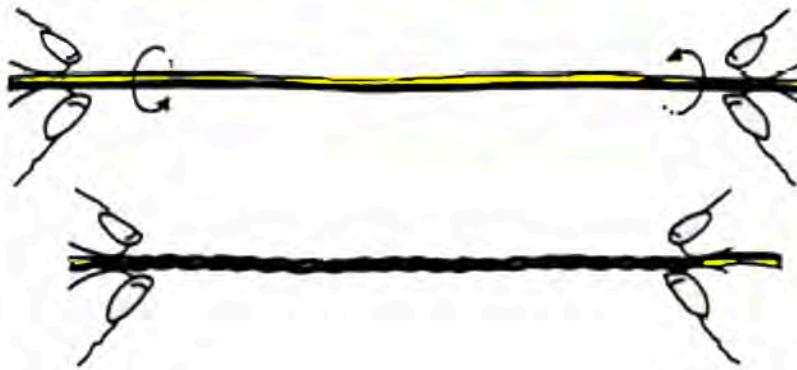


(v) ... **and shrink again!**

Second remark: relaxation of elastic energy

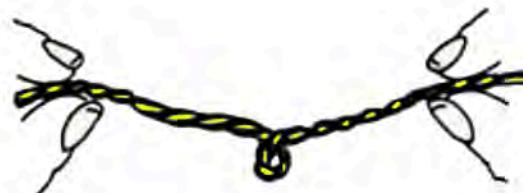
- Supercoiling as transition from T_W to W_r , under conservation of SL :

(i) **keep straight and twist,**



(ii) **pull tight,**

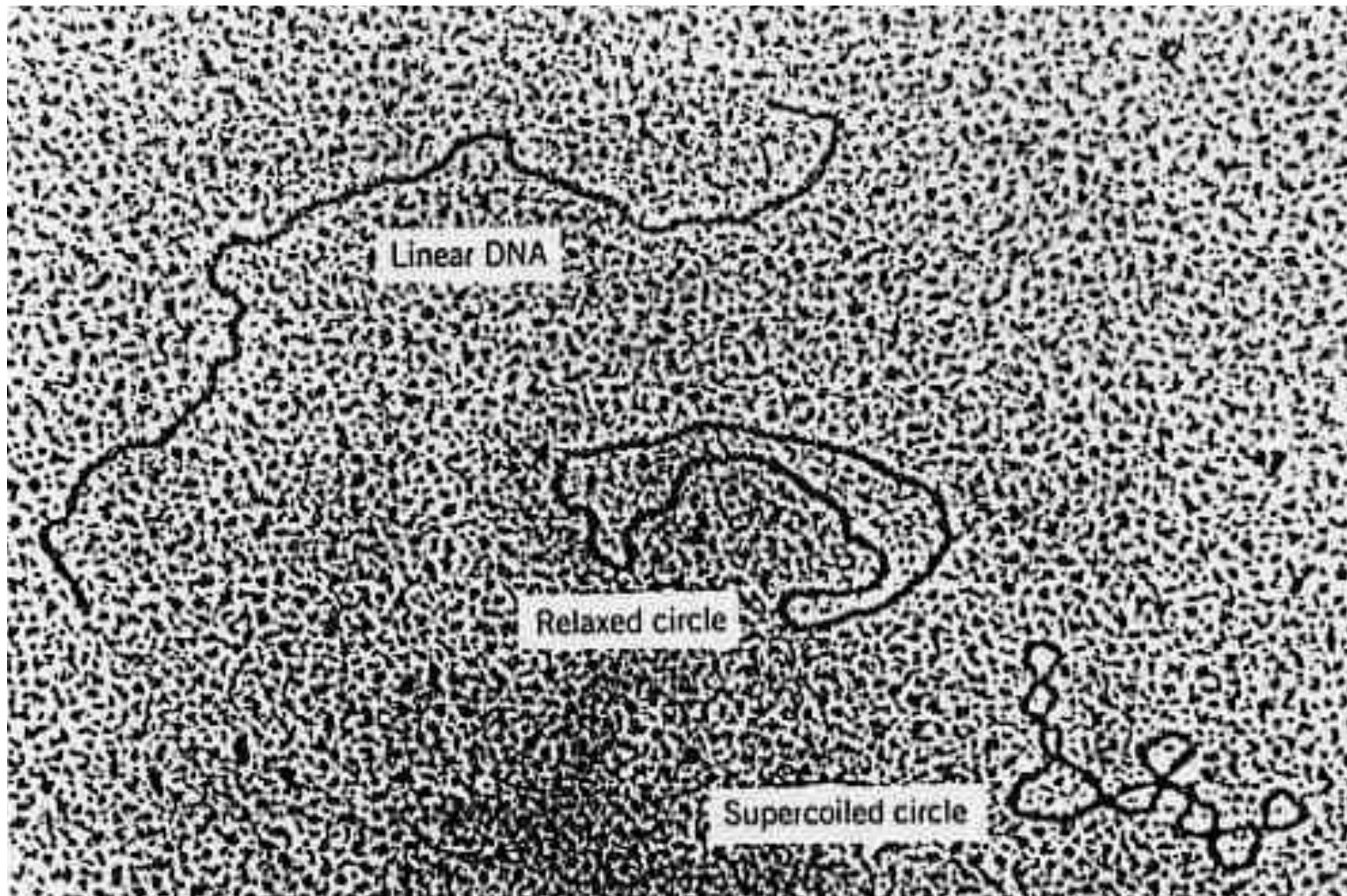
(iii) **let shrink,**



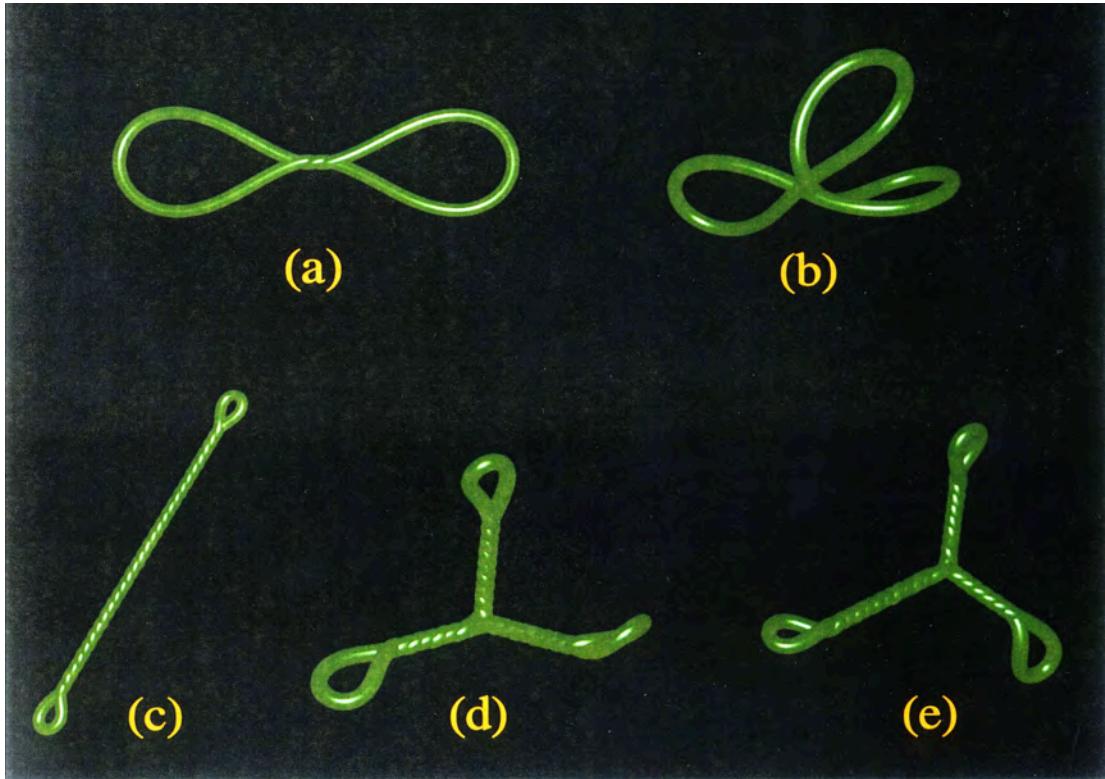
(iv) ... **and shrink,**

(v) ... **and shrink again!**

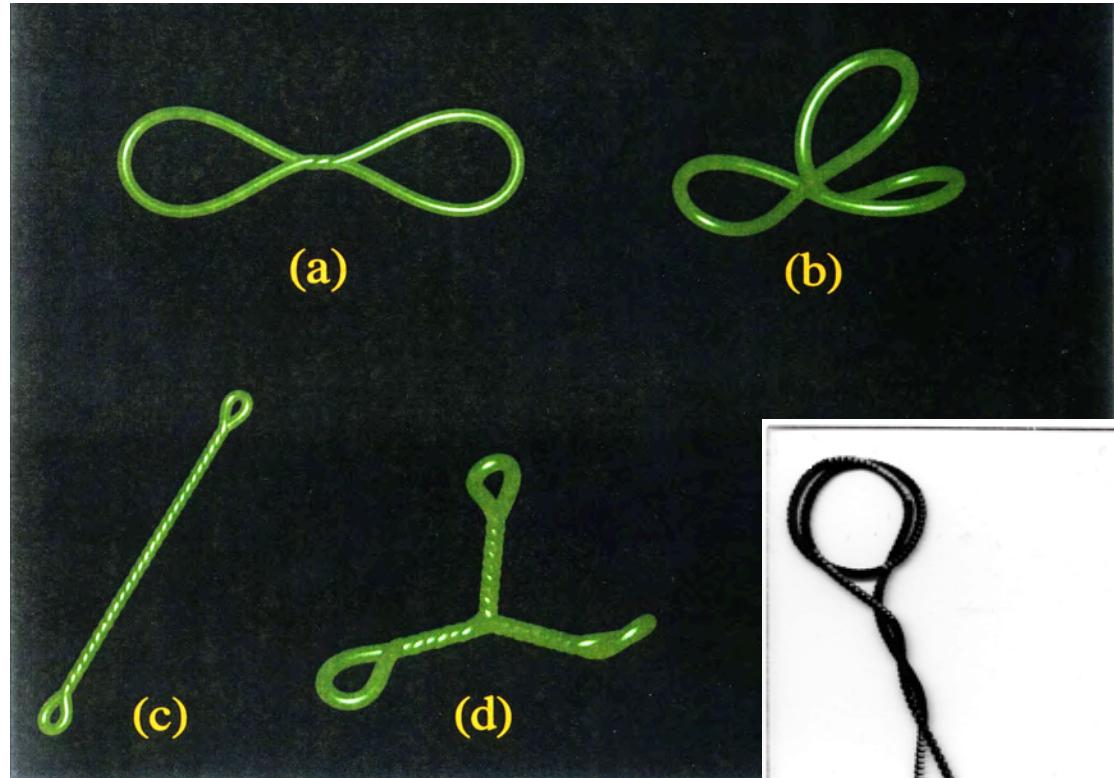
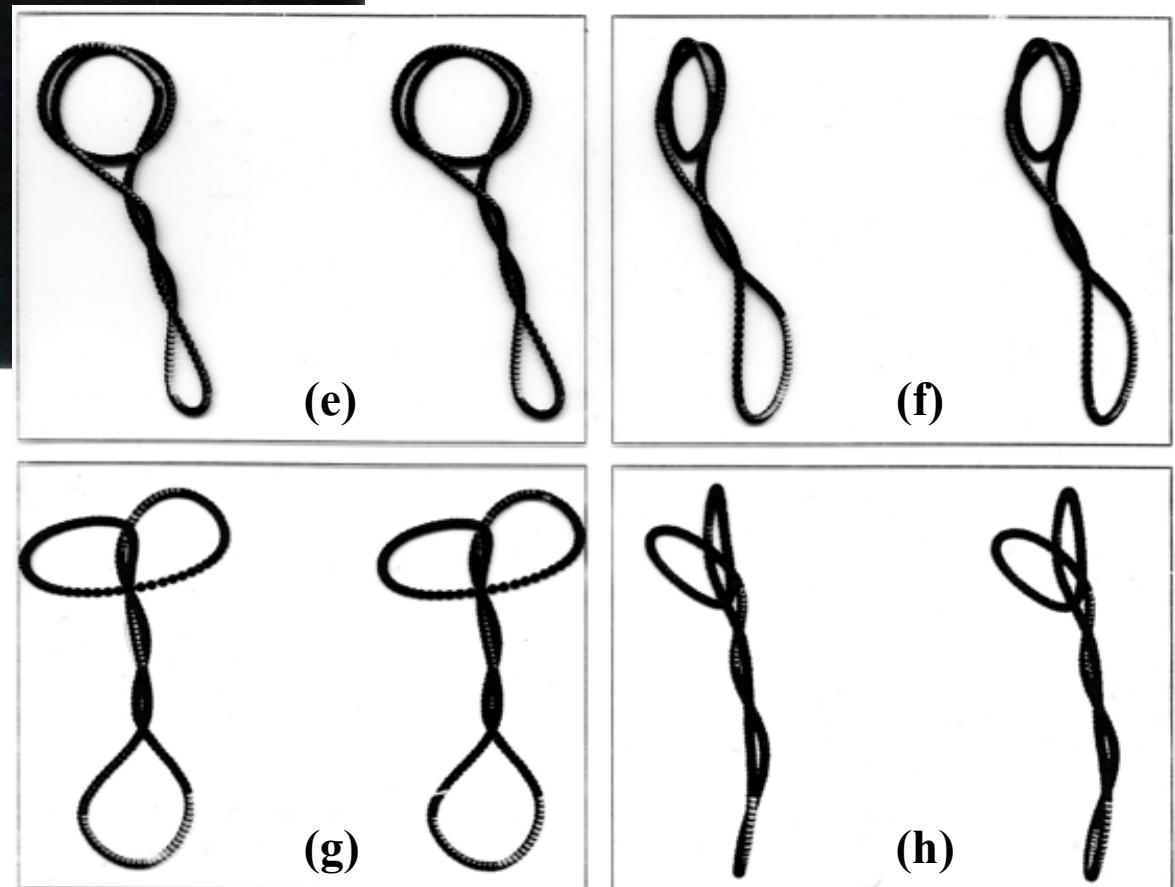
Linear, relaxed and supercoiled DNA



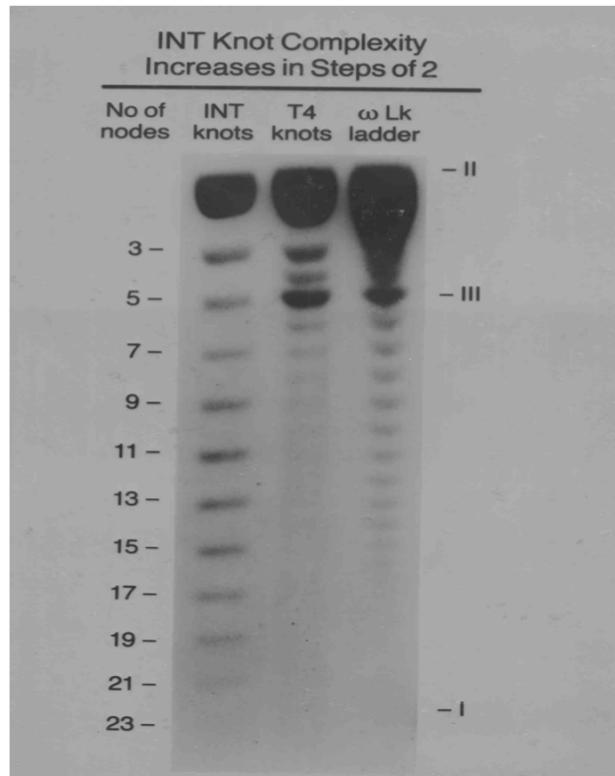
Applications in fiber technology



Applications in fiber technology

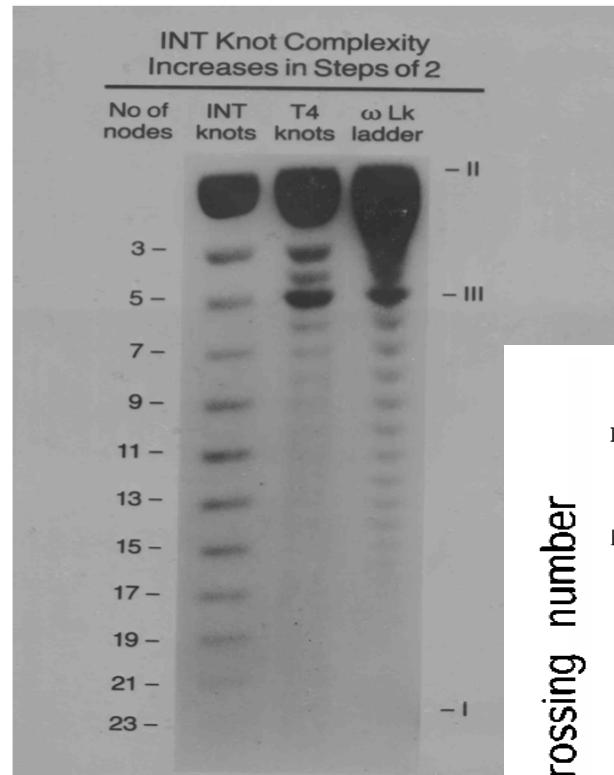


In search of DNA knots

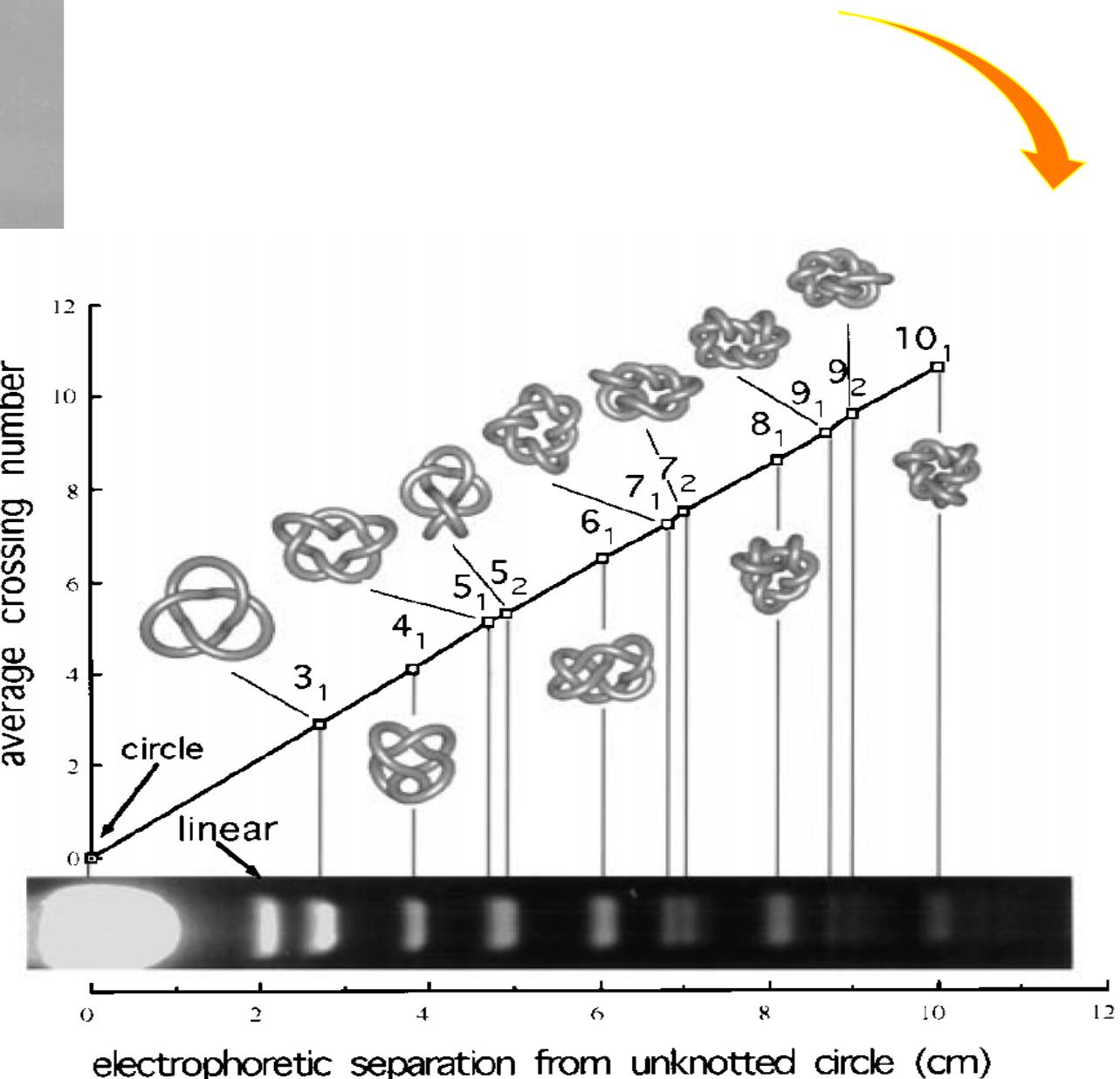


Gel electrophoresis

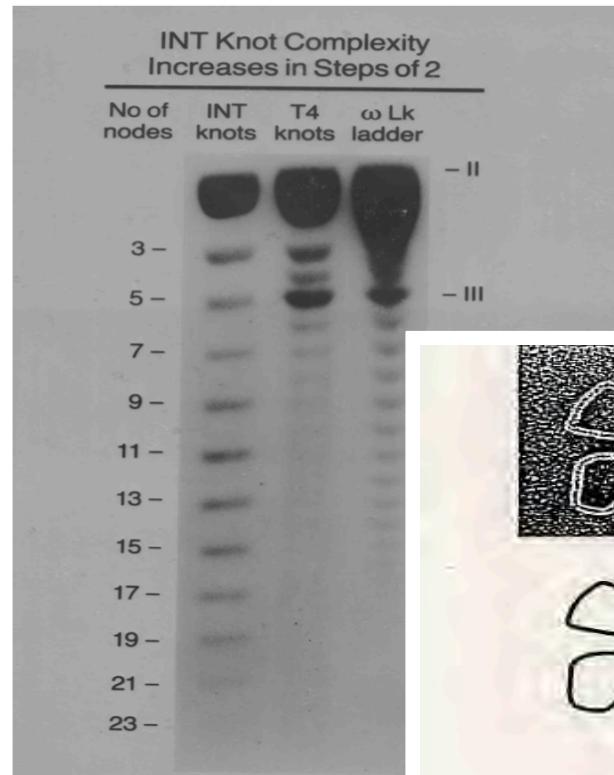
In search of DNA knots



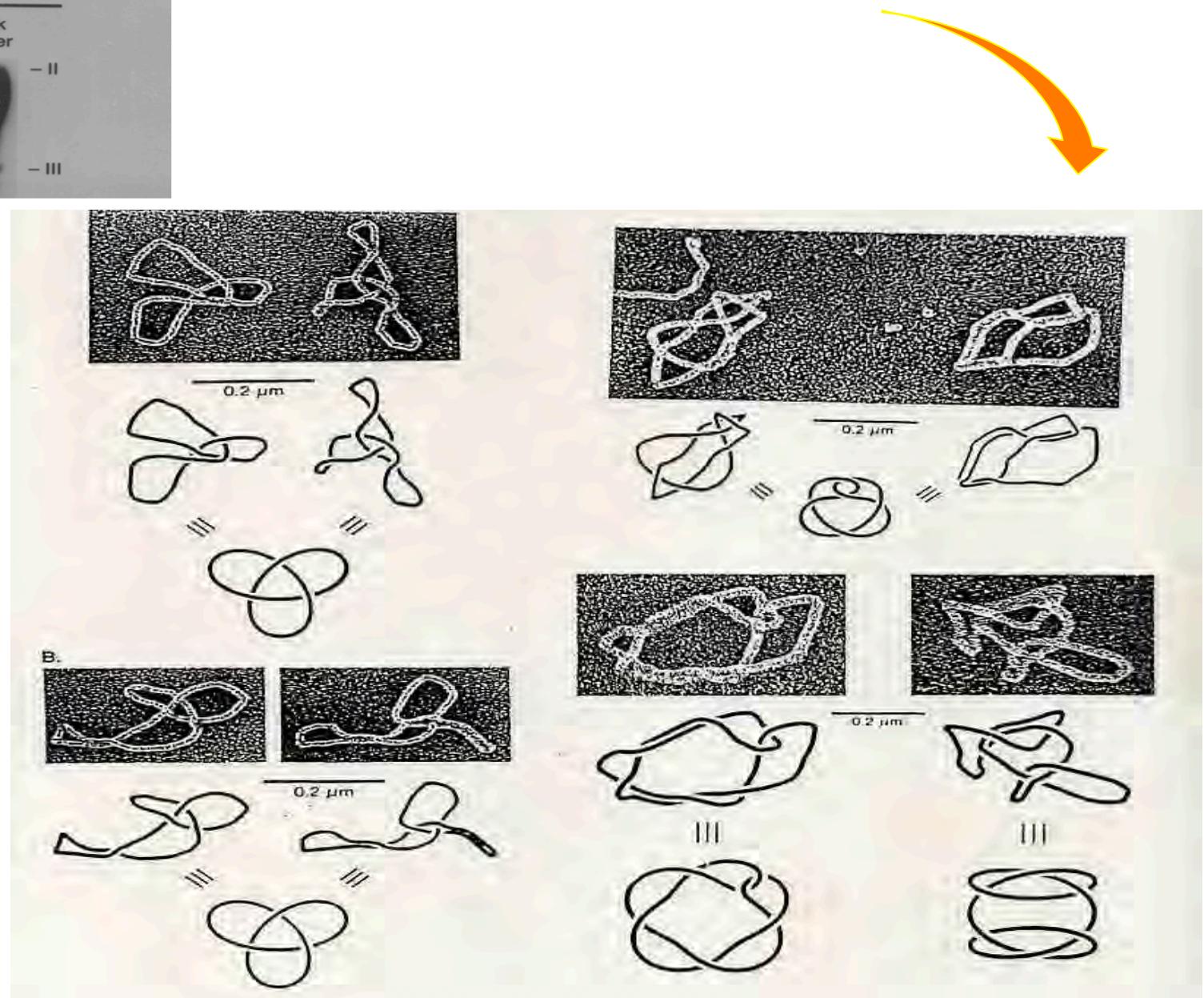
Gel electrophoresis



In search of DNA knots



Gel electrophoresis



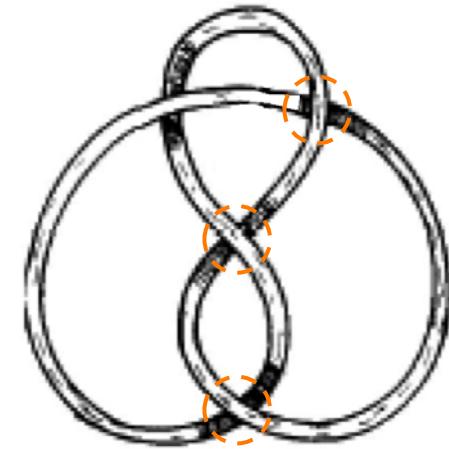
From knots to braids

- **Bridge index (invariant) $b(K)$:** minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.

From knots to braids

- **Bridge index (invariant) $b(K)$: minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.**

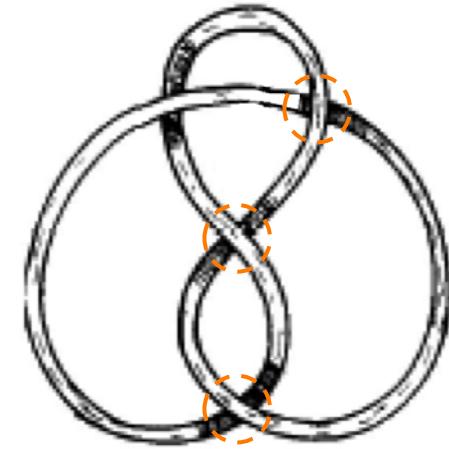
$$b(F^8) = 3$$



From knots to braids

- **Bridge index (invariant) $b(K)$: minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.**

$$b(F^8) = 3$$

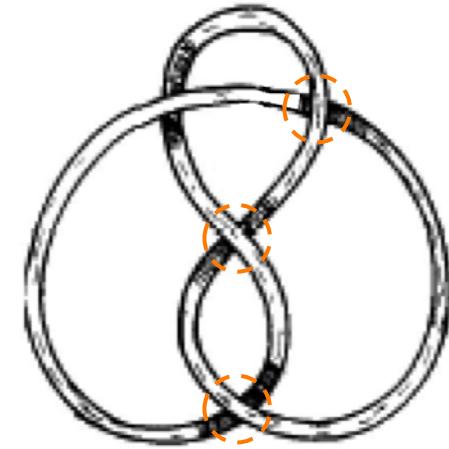


- **Figure-of-8 in braid presentation:**

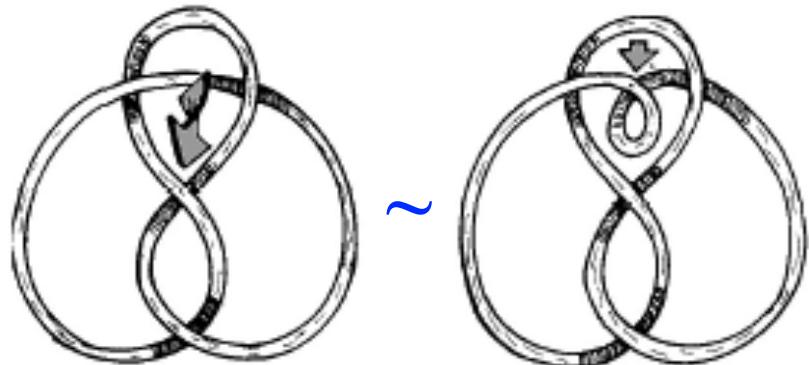
From knots to braids

- **Bridge index (invariant) $b(K)$: minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.**

$$b(F^8) = 3$$



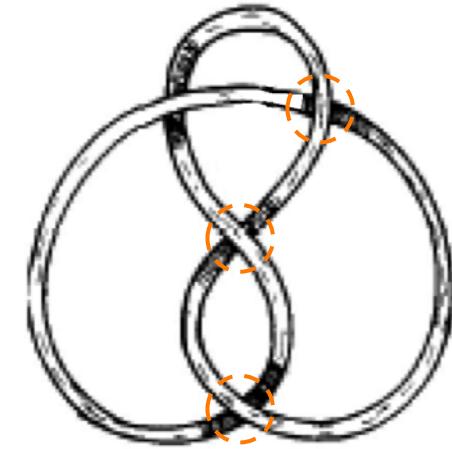
- **Figure-of-8 in braid presentation:**



From knots to braids

- **Bridge index (invariant) $b(K)$: minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.**

$$b(F^8) = 3$$

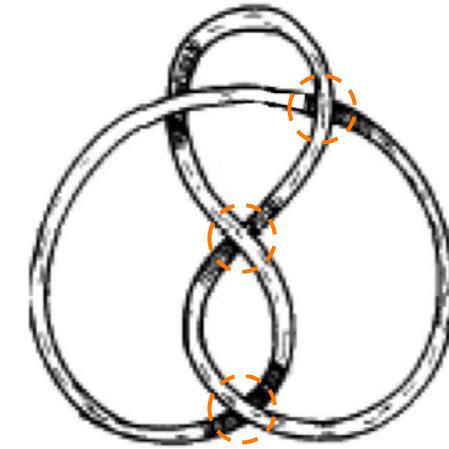


- **Figure-of-8 in braid presentation:**

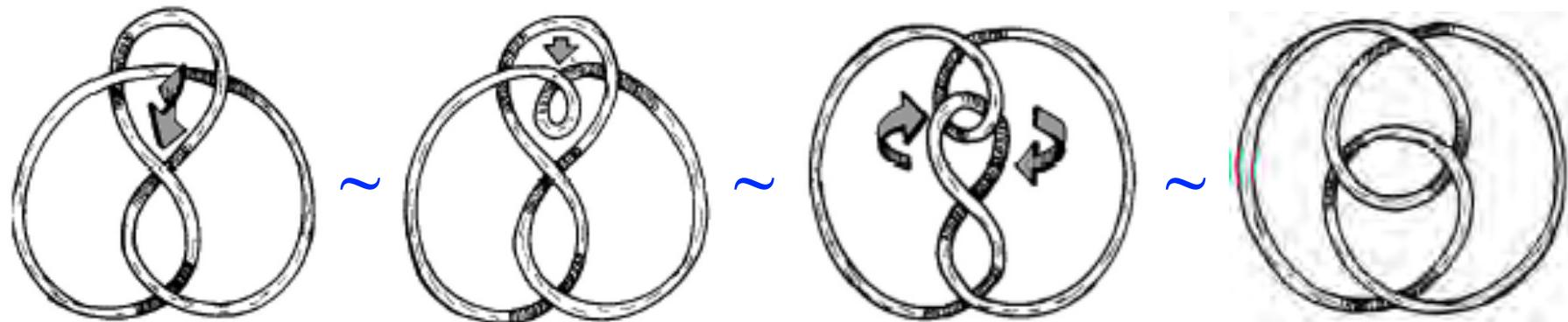
From knots to braids

- **Bridge index (invariant) $b(K)$: minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.**

$$b(F^8) = 3$$



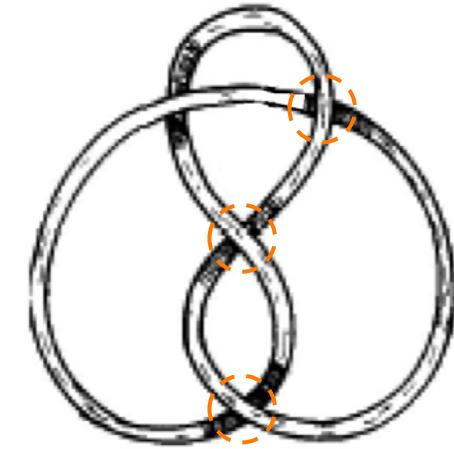
- **Figure-of-8 in braid presentation:**



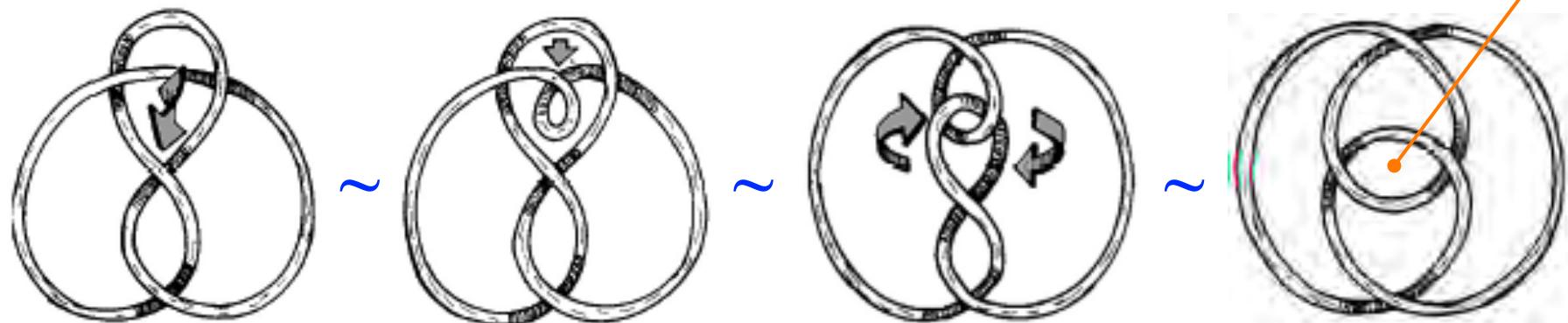
From knots to braids

- **Bridge index (invariant) $b(K)$:** minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.

$$b(F^8) = 3$$



- **Figure-of-8 in braid presentation:**

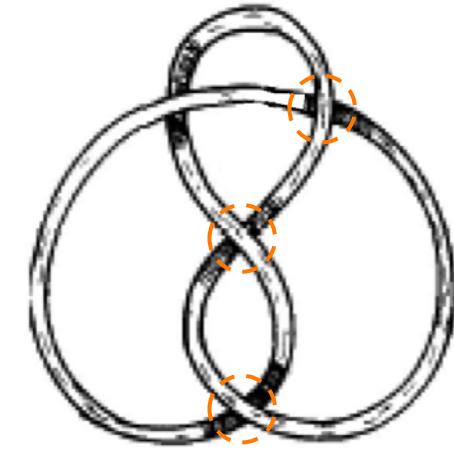


- **Braid index (invariant) $\beta(K)$:** minimal number of strings in braid form.

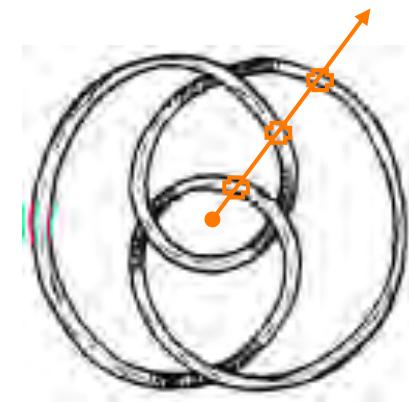
From knots to braids

- **Bridge index (invariant) $b(K)$:** minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.

$$b(F^8) = 3$$



- **Figure-of-8 in braid presentation:**

 \sim \sim \sim 

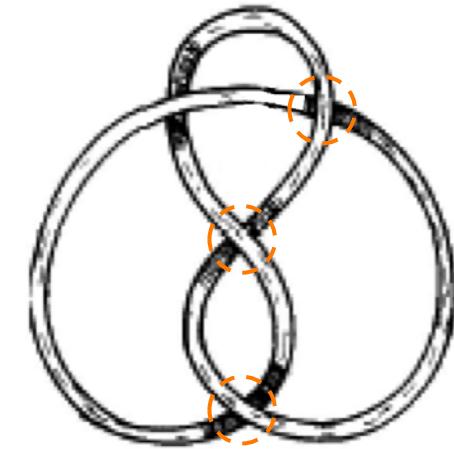
$$\beta(F^8) = 3$$

- **Braid index (invariant) $\beta(K)$:** minimal number of strings in braid form.

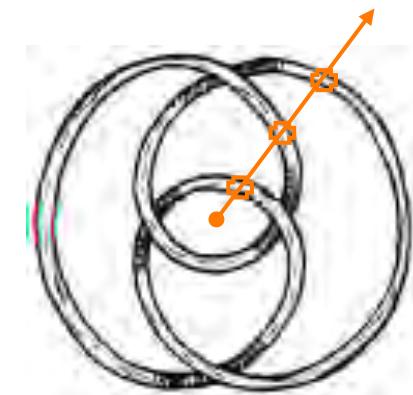
From knots to braids

- **Bridge index (invariant) $b(K)$:** minimal number of bridges (“maxima”) required in all the possible bridge representation of the knot.

$$b(F^8) = 3$$



- **Figure-of-8 in braid presentation:**

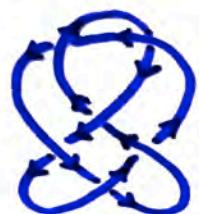
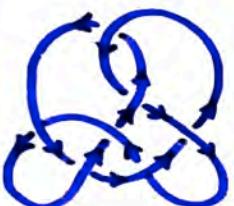
 \sim \sim \sim 

$$\beta(F^8) = 3$$

- **Braid index (invariant) $\beta(K)$:** minimal number of strings in braid form.

$$b(K) \leq \beta(K)$$

Some exercises!

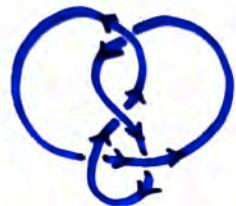


$$K = ?$$

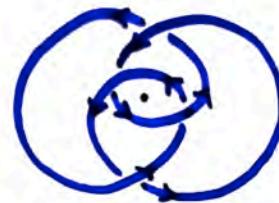
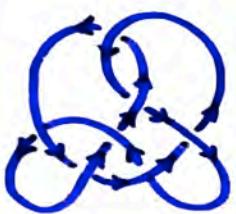
$$c_{\min}(K) = ?$$

$$Wr(K) = ?$$

Some exercises!



~



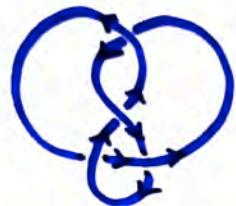
$$K = ?$$

$$c_{\min}(K) = ?$$

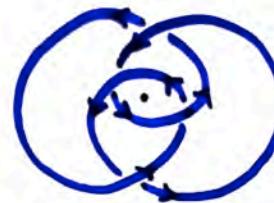
$$Wr(K) = ?$$

$$\beta(K) = ?$$

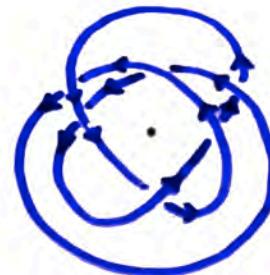
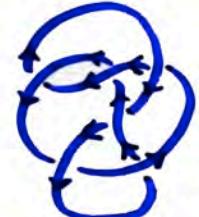
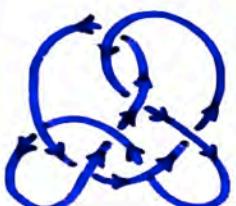
Some exercises!



~



~



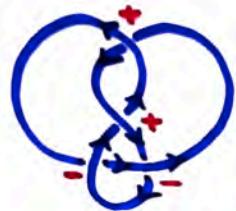
$$K = ?$$

$$c_{\min}(K) = ?$$

$$Wr(K) = ?$$

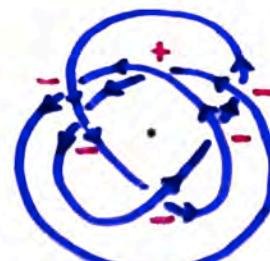
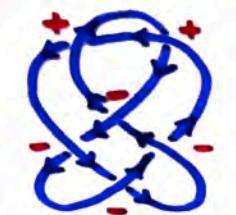
$$\beta(K) = ?$$

Some exercises!

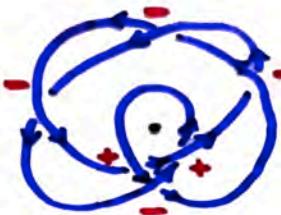
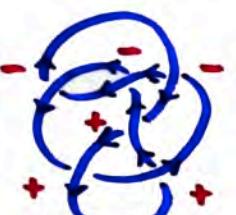


~

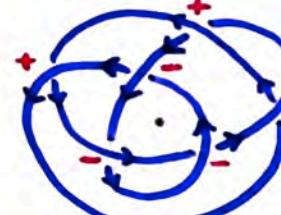
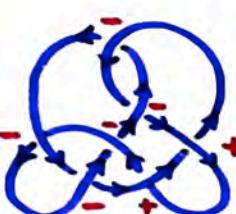
~



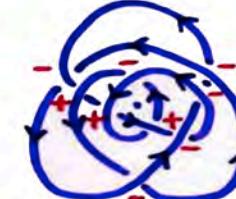
~



~



~



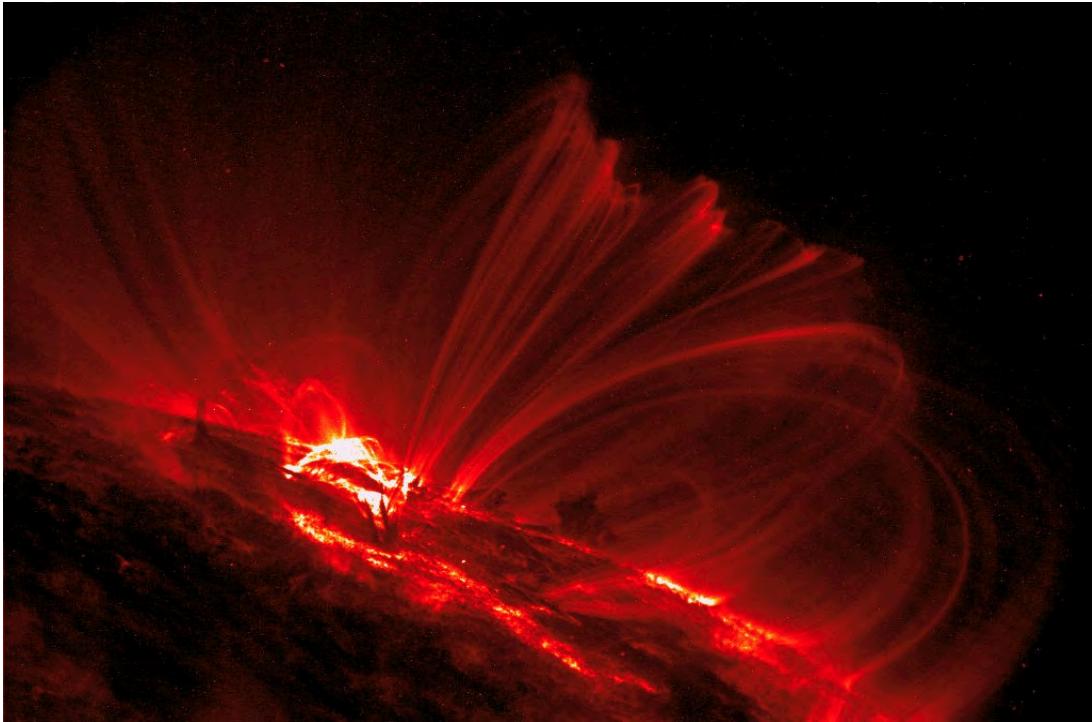
$$K = ?$$

$$c_{\min}(K) = ?$$

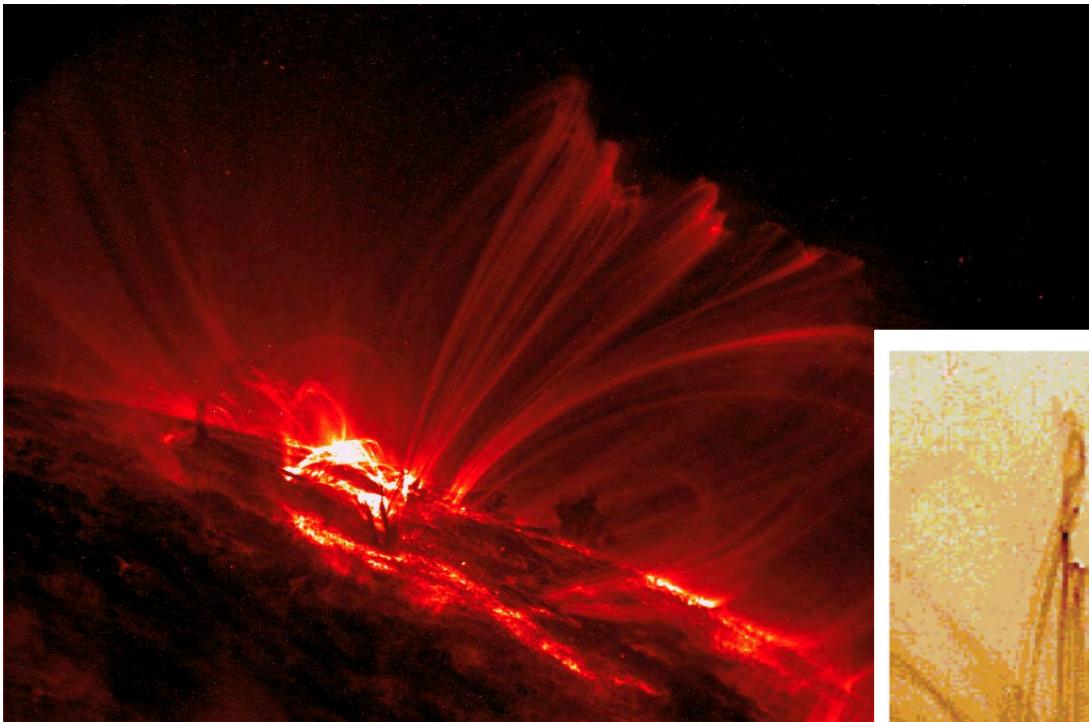
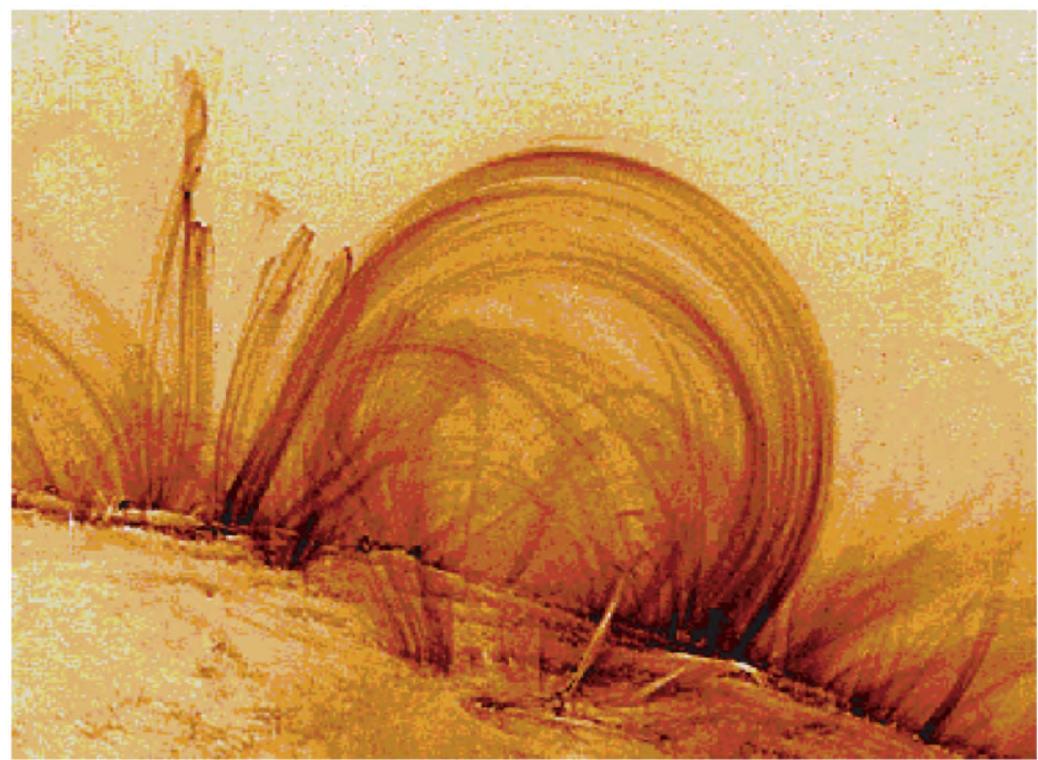
$$Wr(K) = ?$$

$$\beta(K) = ?$$

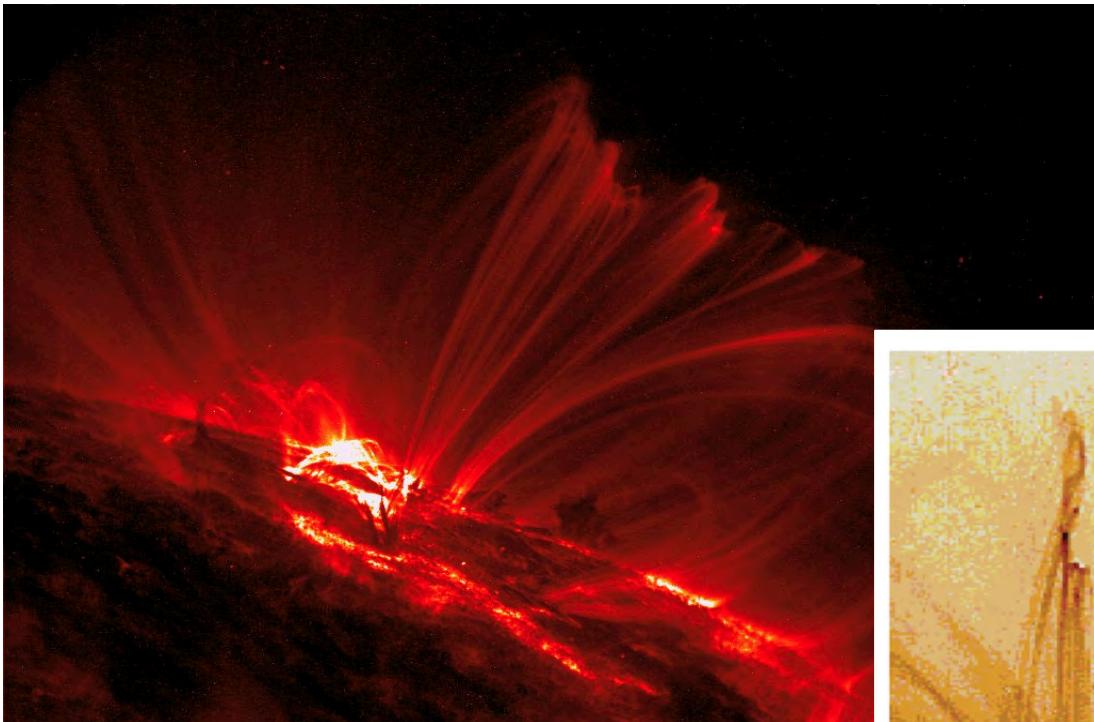
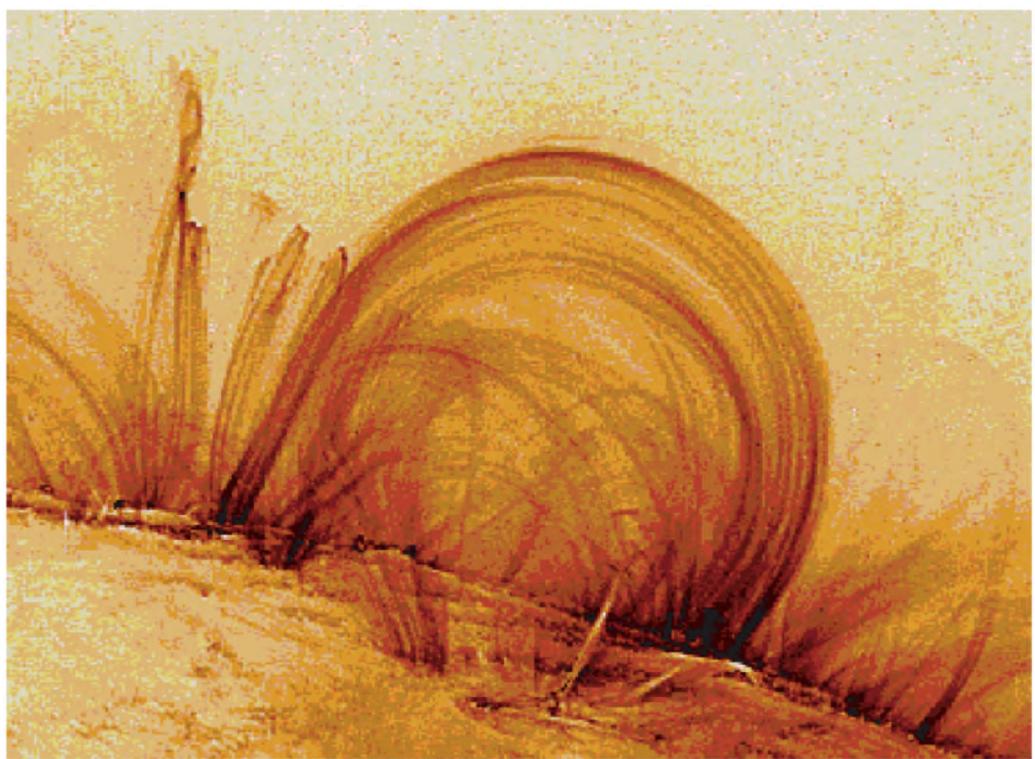
Plasma loops on the Sun



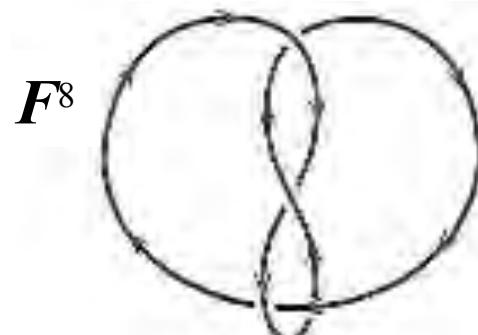
Plasma loops on the Sun



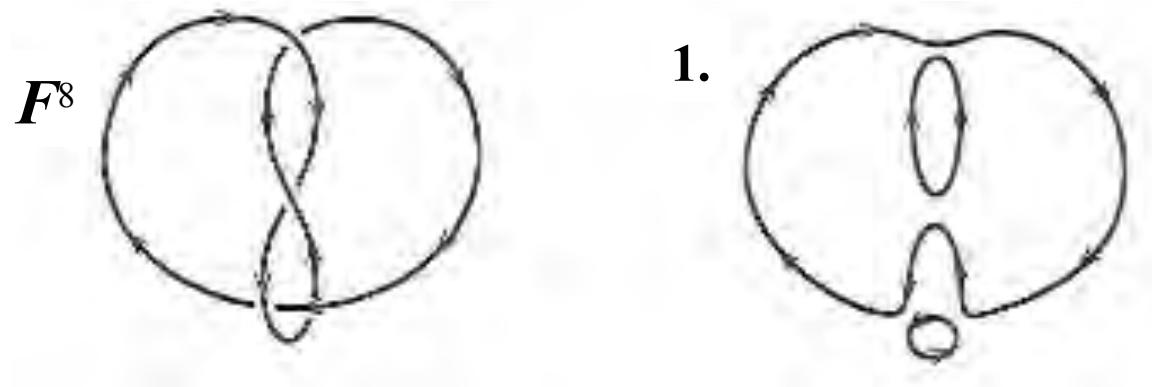
Plasma loops on the Sun



Creating a Seifert surface (orientable spanning surface)



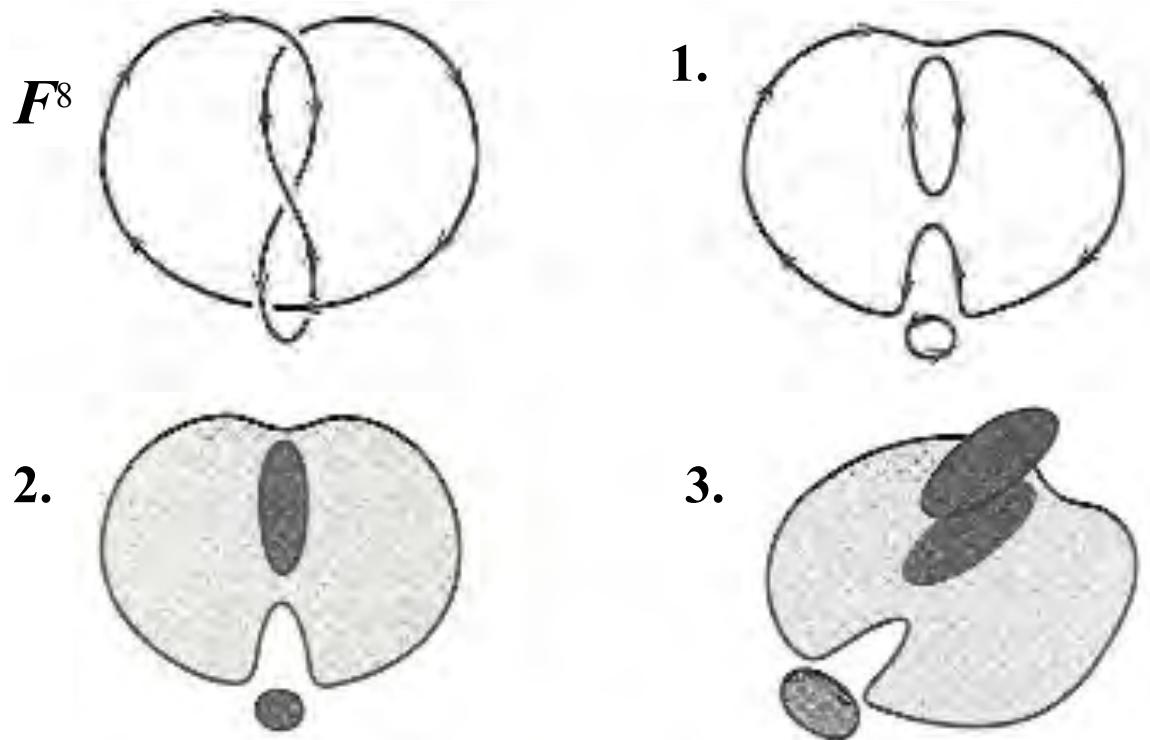
Creating a Seifert surface (orientable spanning surface)



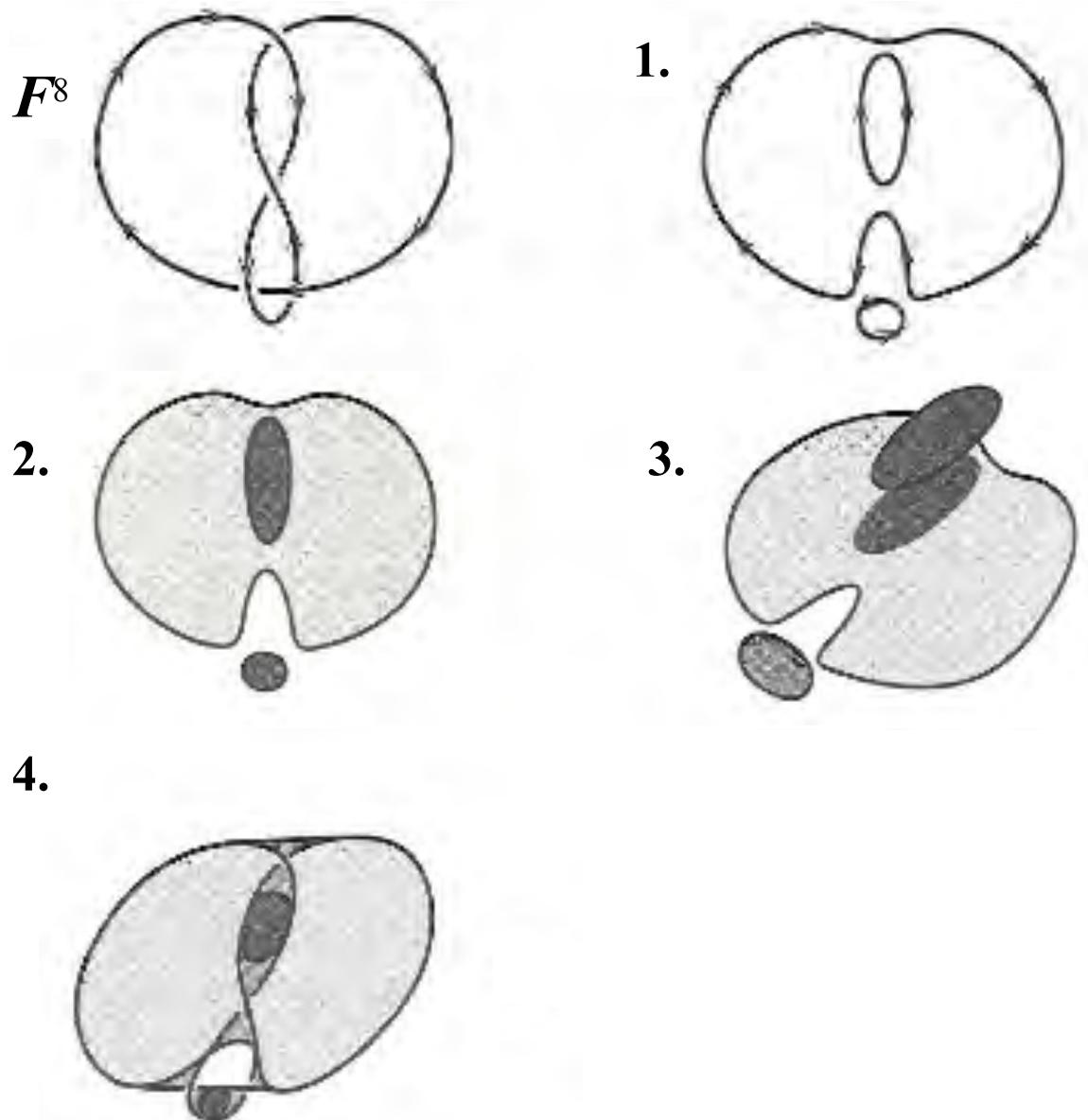
Creating a Seifert surface (orientable spanning surface)



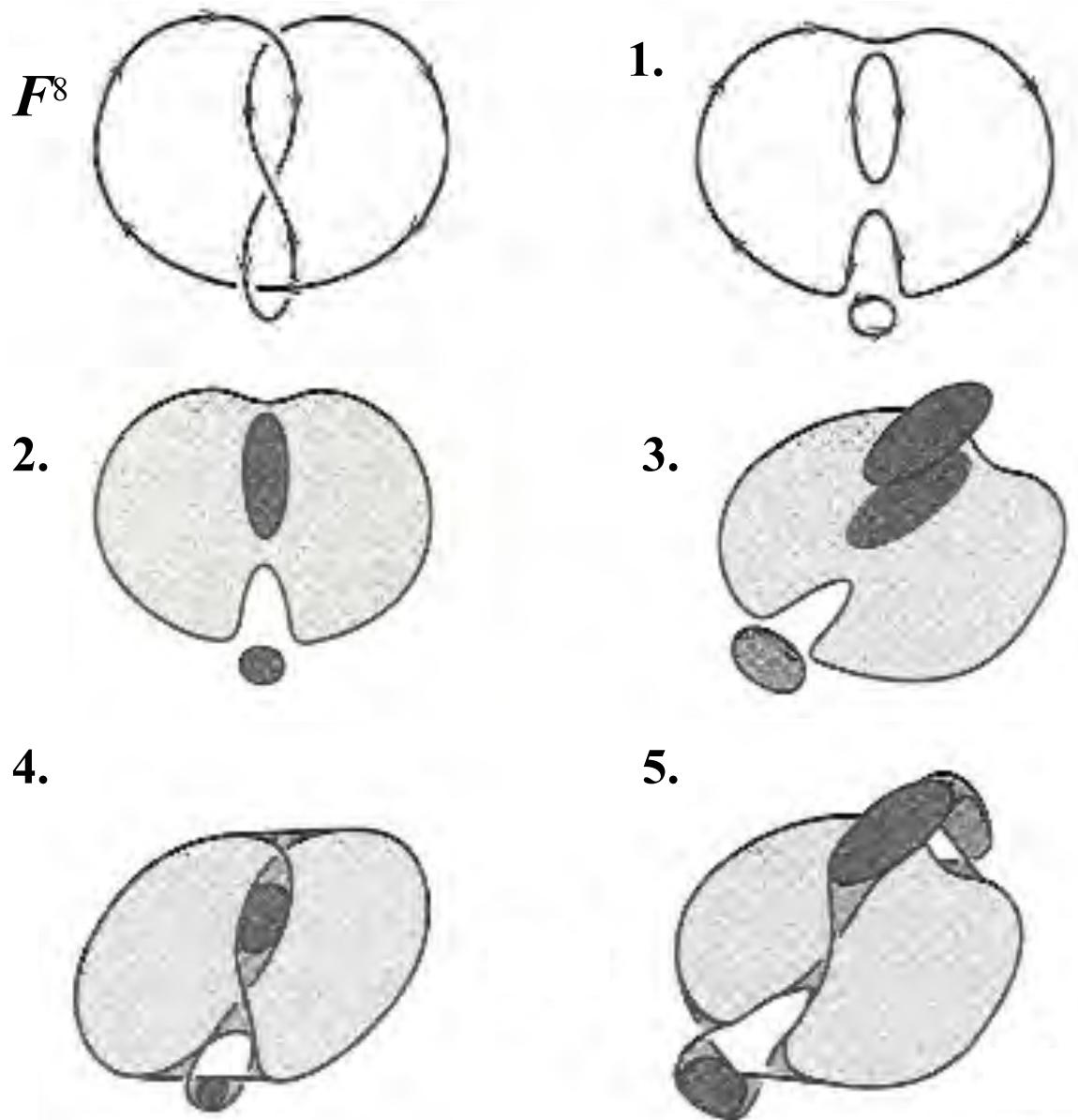
Creating a Seifert surface (orientable spanning surface)



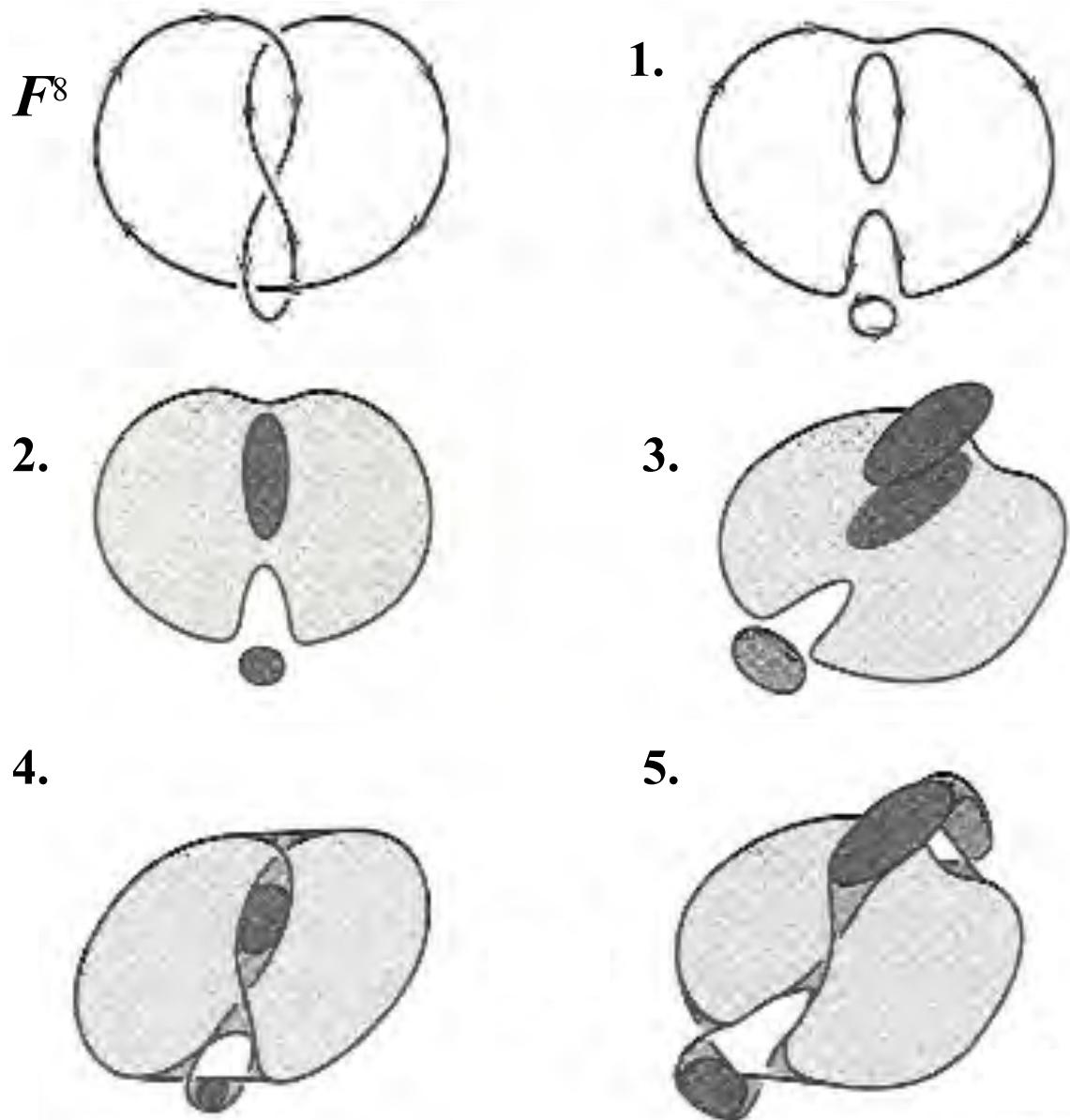
Creating a Seifert surface (orientable spanning surface)



Creating a Seifert surface (orientable spanning surface)



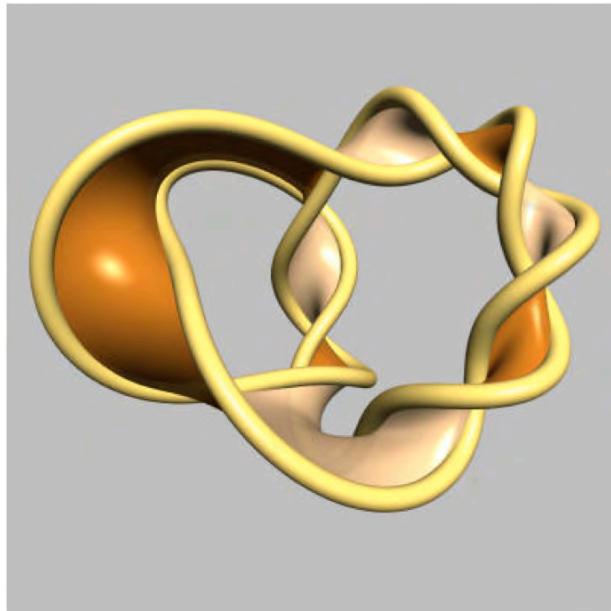
Creating a Seifert surface (orientable spanning surface)



$\beta(K) = \text{minimum number of Seifert circles in any projection of a knot.}$

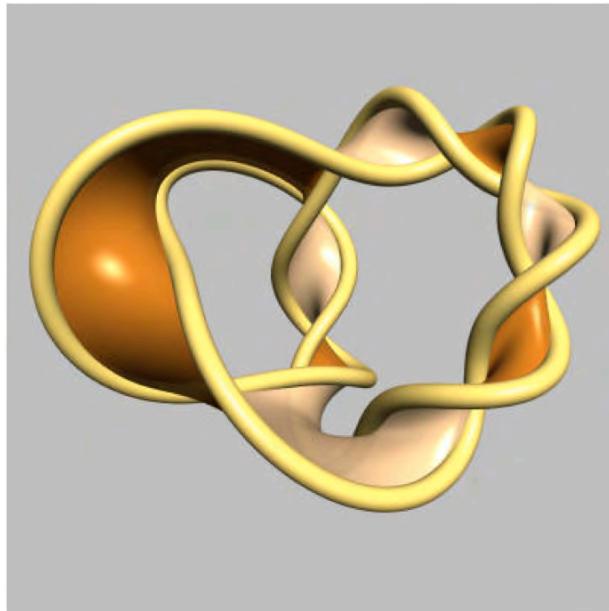
Examples of Seifert surfaces

a

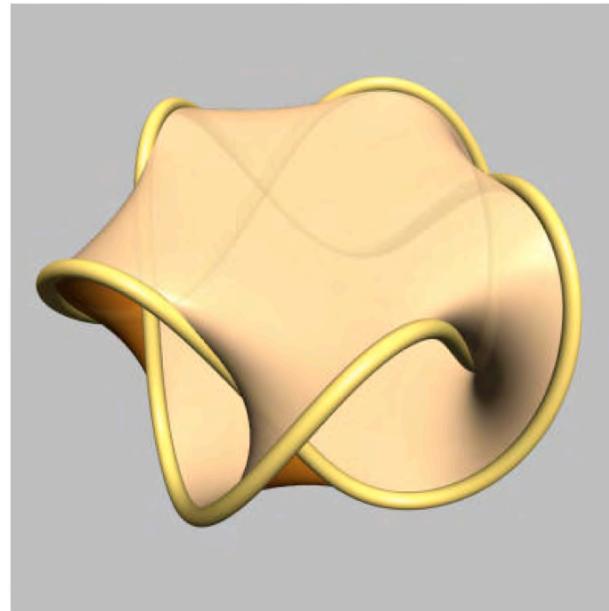


Examples of Seifert surfaces

a

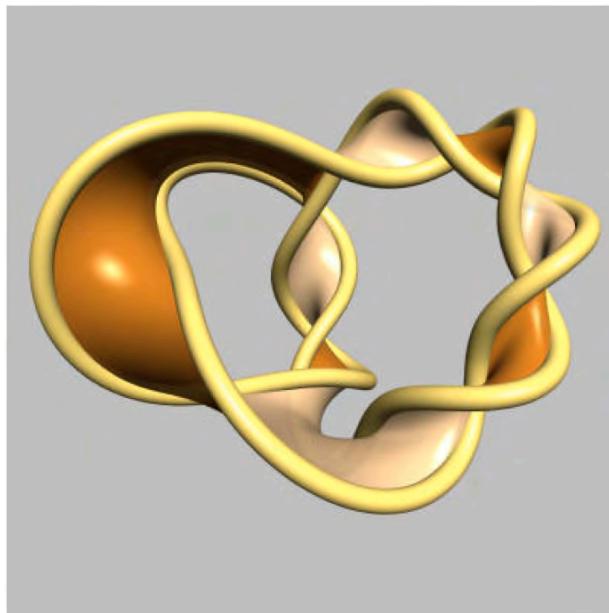


b

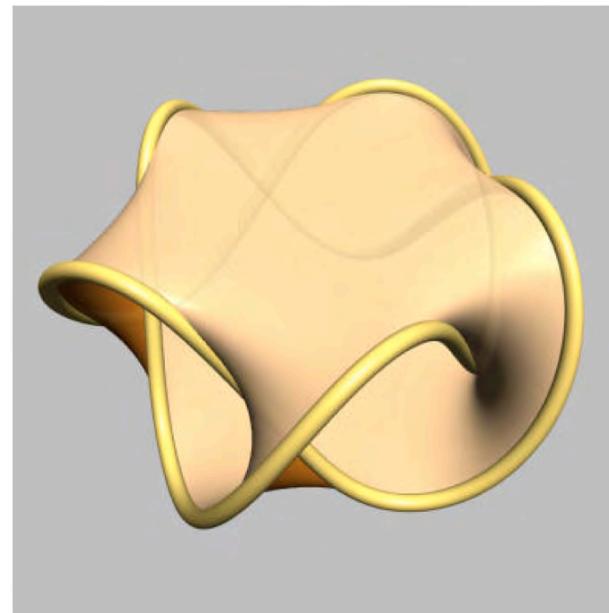


Examples of Seifert surfaces

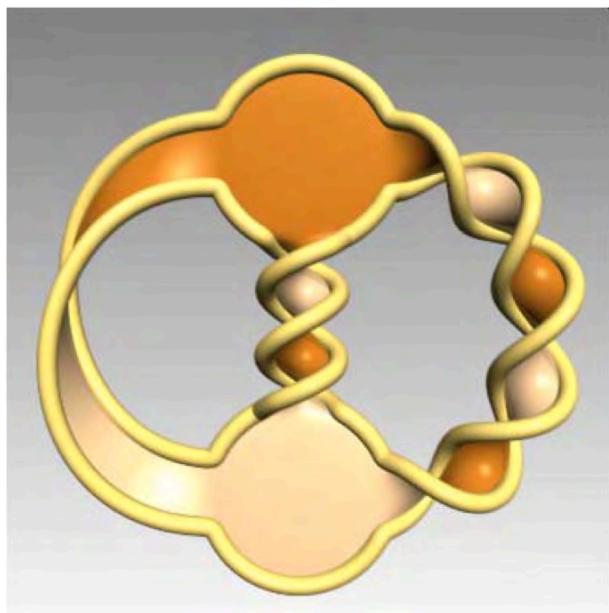
a



b

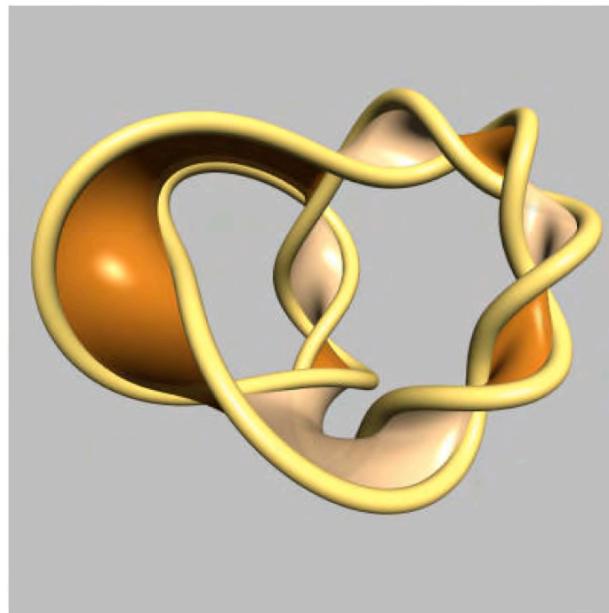


c

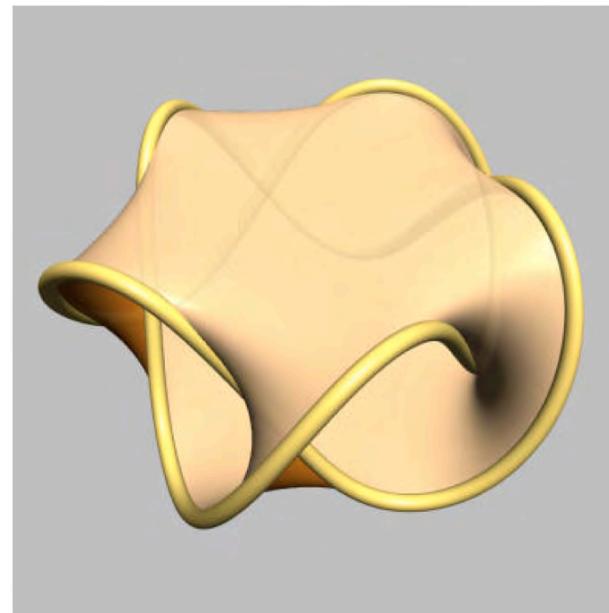


Examples of Seifert surfaces

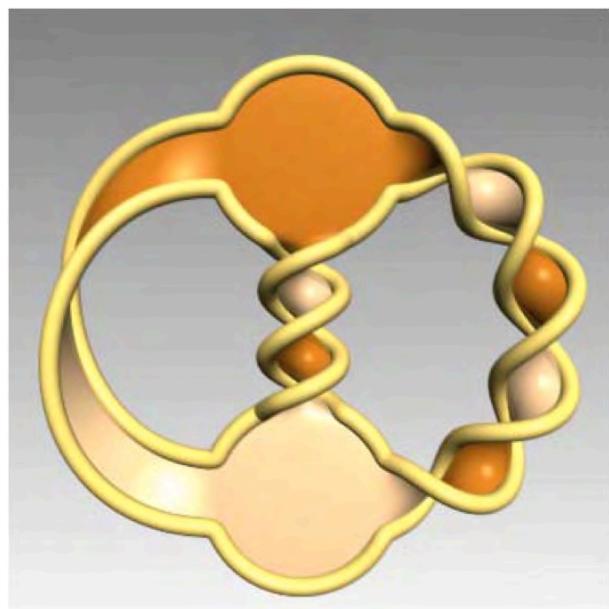
a



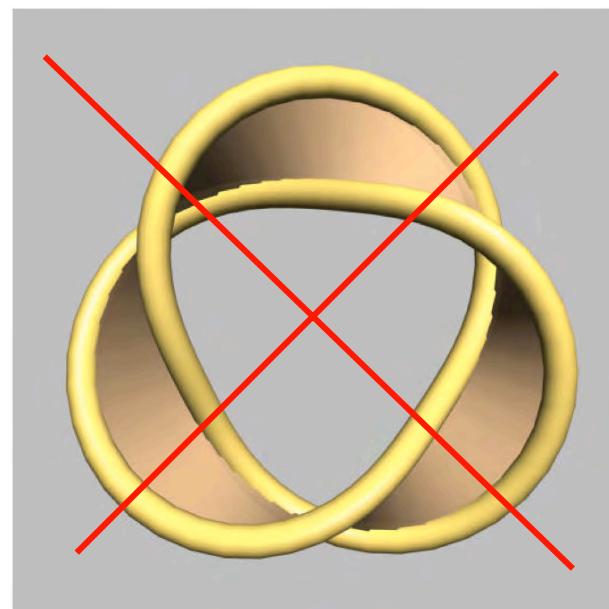
b



c

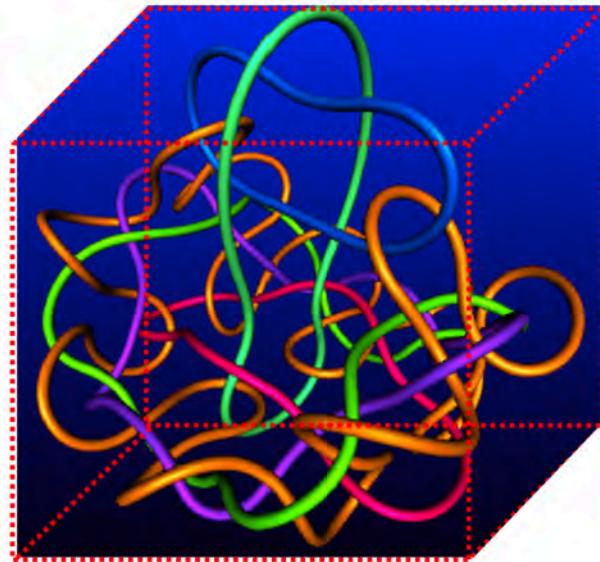


d



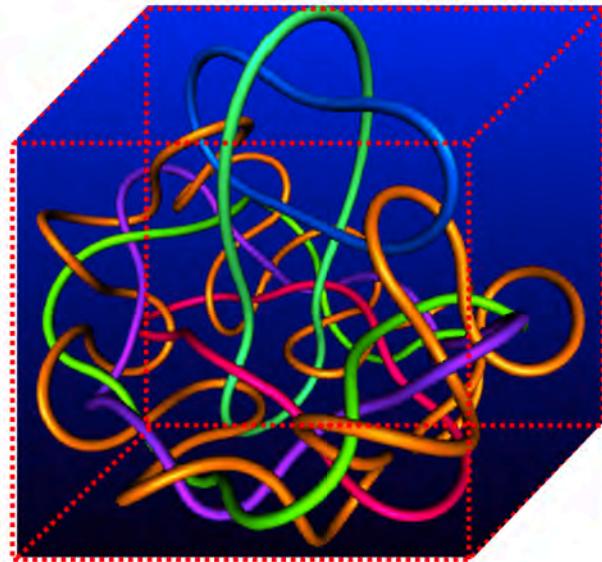
non-orientable

The polynomial era



The polynomial era

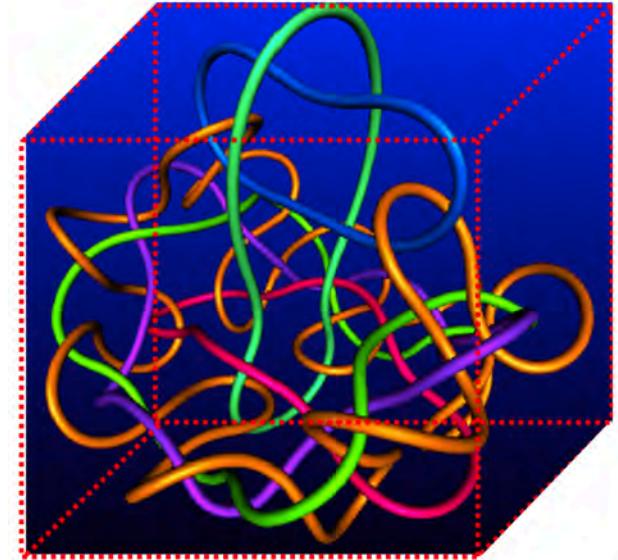
1930: Alexander, ...



The polynomial era

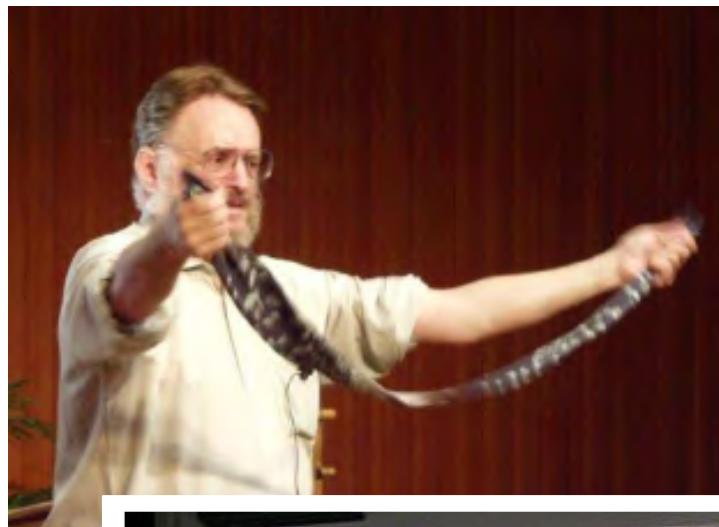
1930: Alexander, ...

1970: Conway, ...

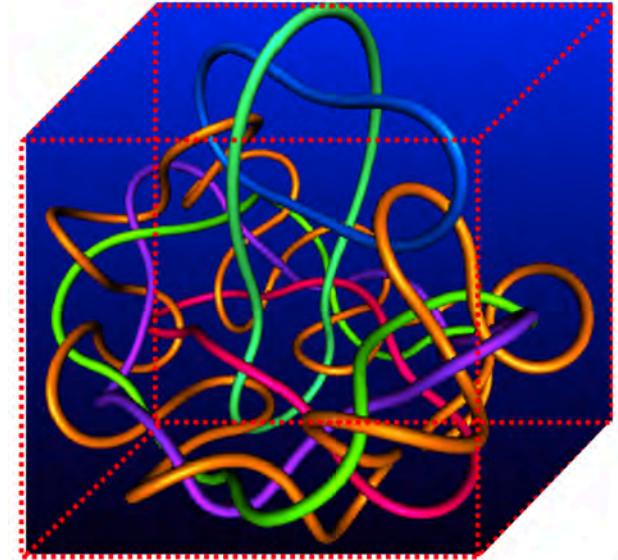


The polynomial era

1930: Alexander, ...



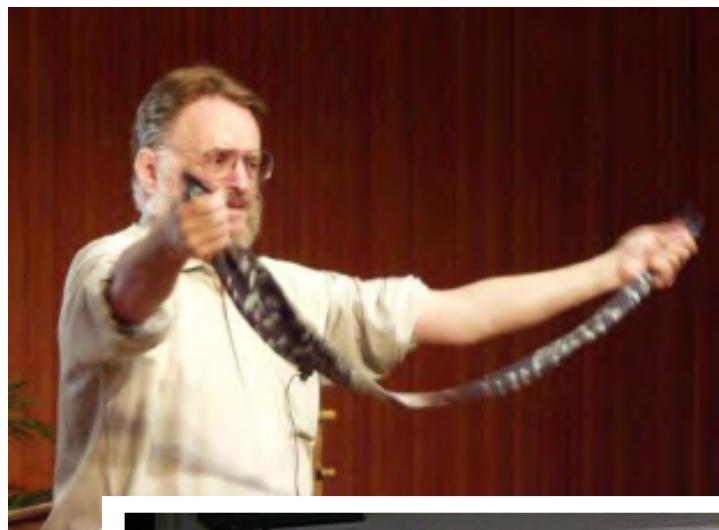
1970: Conway, ...



1980: Kauffman, ...

The polynomial era

1930: Alexander, ...



1970: Conway, ...



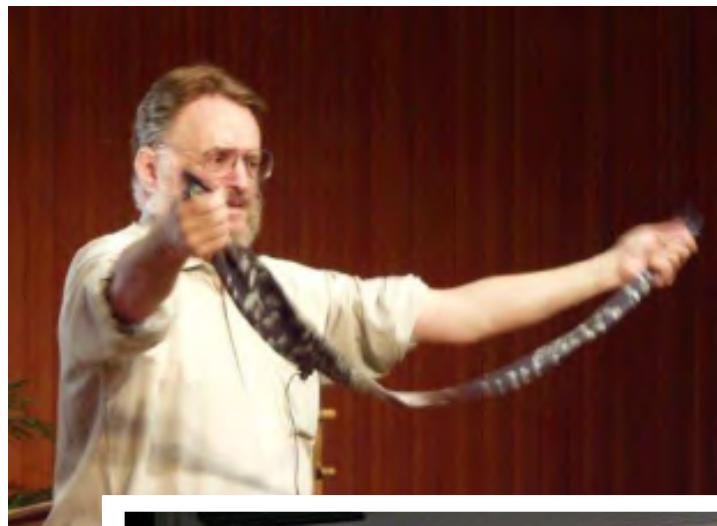
1990: Jones, ...

1980: Kauffman, ...

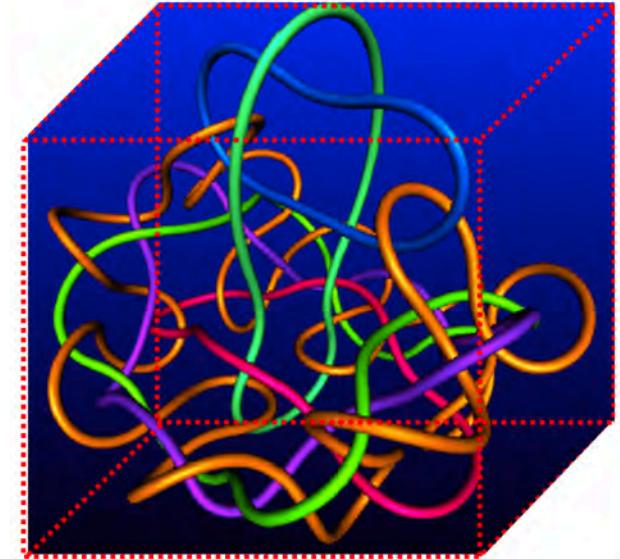
The polynomial era

$$P(\text{trefoil}) = a^{-2} + 2a^{-1} - 5 - 2a + 3a^2$$

1930: Alexander, ...



1970: Conway, ...



1990: Jones, ...

1980: Kauffman, ...

The Jones polynomial $V(K)$

$$V(K) = f(\tau)$$

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Trefoil Knot}\right) =$$

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Diagram of a trefoil knot with orientation markers}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Diagram of a trefoil knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(\text{O}) = 1 \\ \text{(V.2)} & V\left(\text{Diagram with a crossing}\right) = \tau^2 V\left(\text{Diagram with a crossing}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\text{Diagram with a crossing}\right) \end{cases}$$

The Jones polynomial $V(K)$

- **An example:**

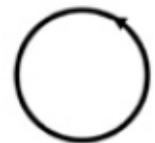
$$V(K) = f(\tau)$$

$$V\left(\text{ trefoil knot }\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(\text{O}) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \nearrow \\ + & \searrow \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \nearrow \\ - & \searrow \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow \\ = \end{smallmatrix}\right) \end{cases}$$

V.1:



unknot

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Trefoil Knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(\text{O}) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{+} & \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{-} & \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow & \\ \textcolor{red}{=} & \end{smallmatrix}\right) \end{cases}$$

V.1:
unknot \sim γ_+

The Jones polynomial $V(K)$

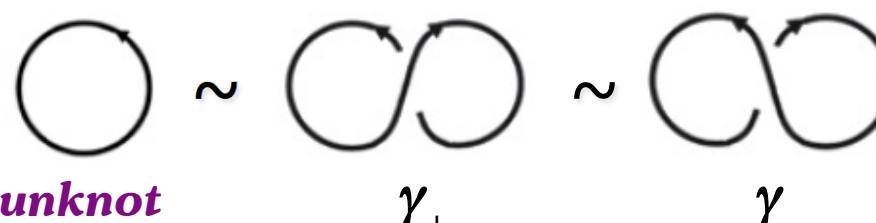
- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Trefoil Knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(O) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{+} & \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{-} & \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow \\ \textcolor{red}{=} \end{smallmatrix}\right) \end{cases}$$

V.1:  \sim γ_+ \sim γ_-

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Trefoil Knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(O) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{+} & \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{-} & \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow \\ \textcolor{red}{=} \end{smallmatrix}\right) \end{cases}$$

V.1: \sim \sim $V(O) = V(\gamma_+) = V(\gamma_-) = 1$

unknot γ_+ γ_-

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

$$V\left(\text{Trefoil Knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(O) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{+} & \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{-} & \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow \\ \textcolor{red}{=} \end{smallmatrix}\right) \end{cases}$$

V.1: \sim \sim $V(O) = V(\gamma_+) = V(\gamma_-) = 1$

unknot γ_+ γ_-

V.2: γ_+

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

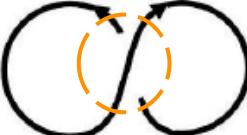
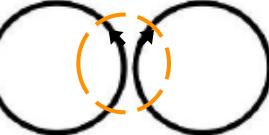
$$V\left(\text{Trefoil Knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(O) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{+} & \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \nearrow \\ \textcolor{red}{-} & \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow \\ \textcolor{red}{=} \end{smallmatrix}\right) \end{cases}$$

V.1: \sim \sim $V(O) = V(\gamma_+) = V(\gamma_-) = 1$

unknot γ_+ γ_-

V.2:  : 

γ_+ γ_- U^2

The Jones polynomial $V(K)$

- **An example:**

$$V(K) = f(\tau)$$

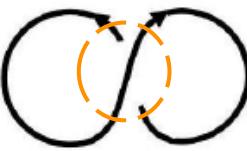
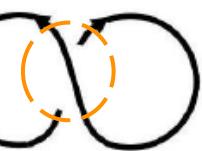
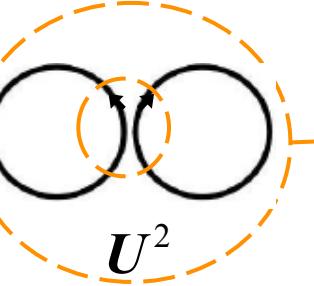
$$V\left(\text{Trefoil Knot}\right) = V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} & V(O) = 1 \\ \text{(V.2)} & V\left(\begin{smallmatrix} \nearrow & \searrow \\ + & \end{smallmatrix}\right) = \tau^2 V\left(\begin{smallmatrix} \nearrow & \searrow \\ - & \end{smallmatrix}\right) + (\tau^{\frac{3}{2}} - \tau^{\frac{1}{2}}) V\left(\begin{smallmatrix} \nearrow \\ = \end{smallmatrix}\right) \end{cases}$$

V.1: \sim \sim $V(O) = V(\gamma_+) = V(\gamma_-) = 1$

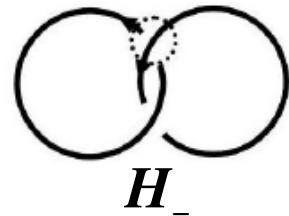
unknot γ_+ γ_-

V.2:  :   $\rightarrow V(U^2) = -\tau^{-\frac{1}{2}} - \tau^{\frac{1}{2}}$

γ_+ γ_- U^2

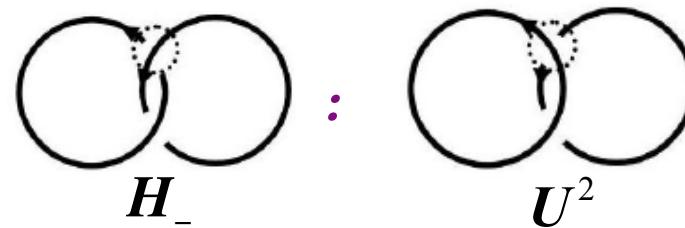
Worked-out examples

- **Hopf link H_-** :



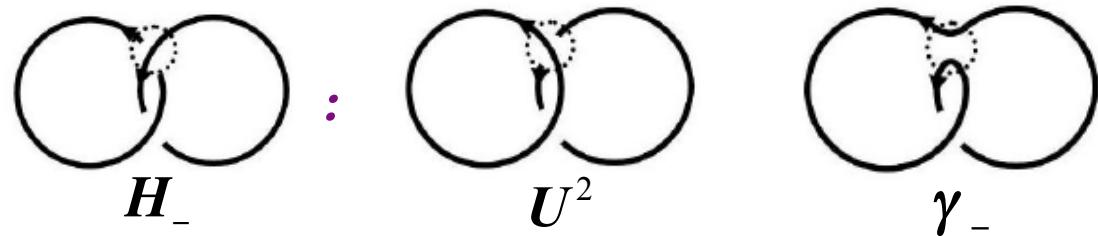
Worked-out examples

- **Hopf link H_-** :



Worked-out examples

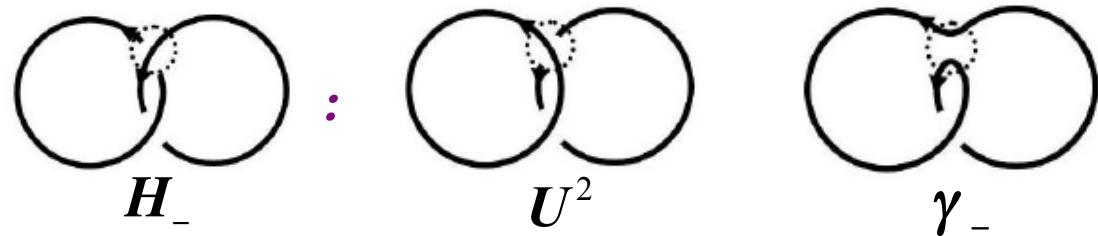
- **Hopf link H_-** :



Worked-out examples

- **Hopf link H_-** :

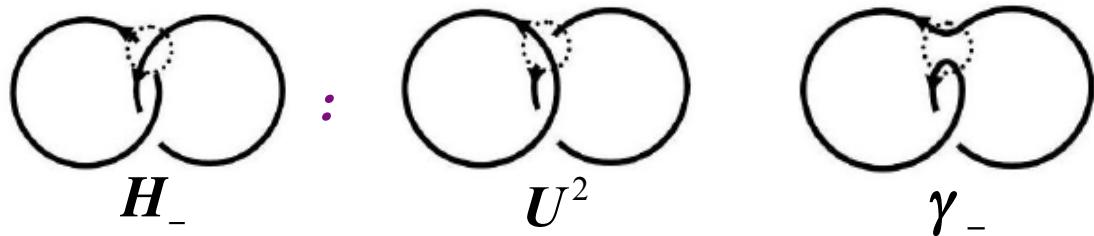
$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



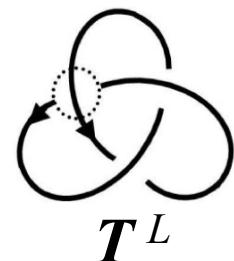
Worked-out examples

- **Hopf link H_- :**

$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



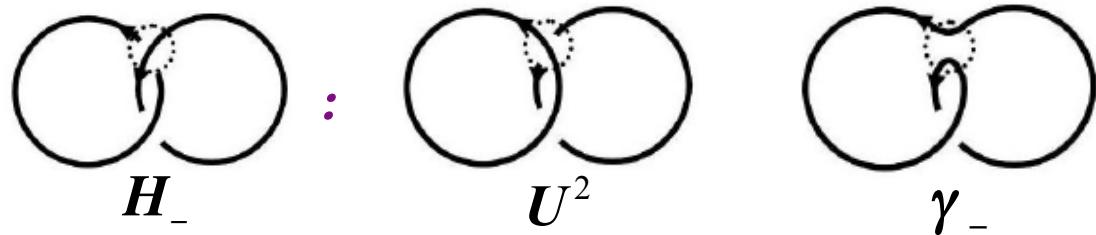
- **Left-handed trefoil knot T^L :**



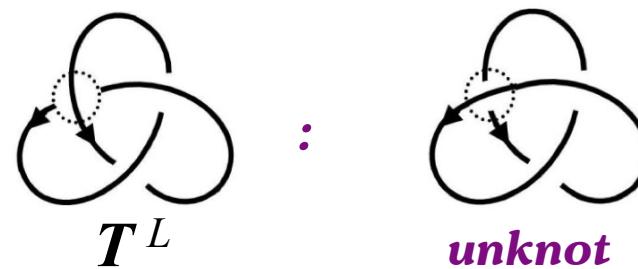
Worked-out examples

- **Hopf link H_- :**

$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



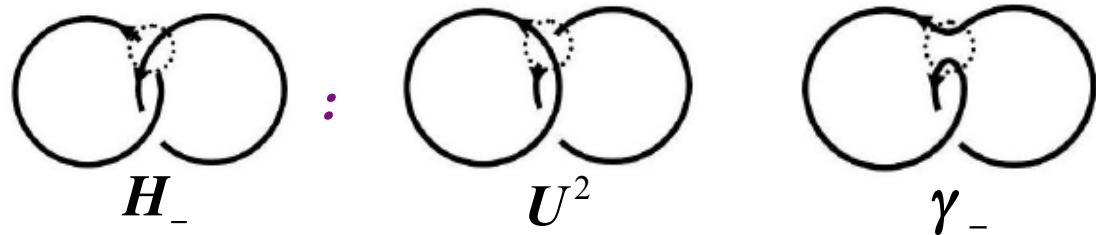
- **Left-handed trefoil knot T^L :**



Worked-out examples

- **Hopf link H_- :**

$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$

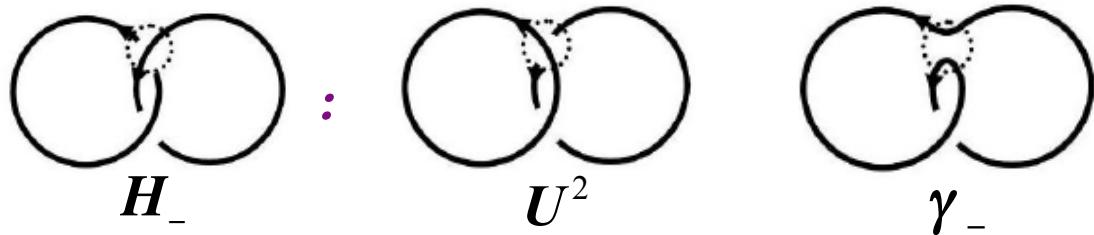


- **Left-handed trefoil knot T^L :**

Worked-out examples

- **Hopf link H_- :**

$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



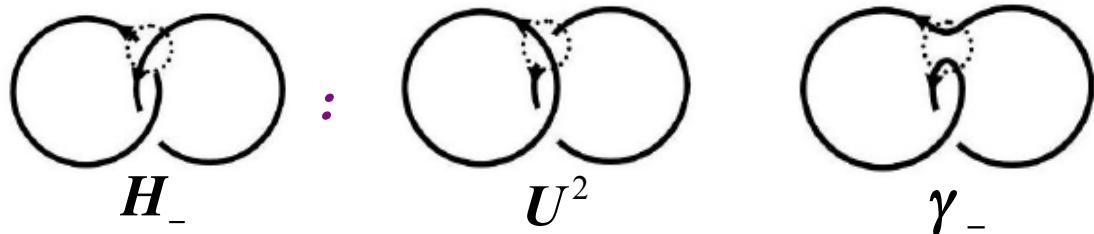
- **Left-handed trefoil knot T^L :**

$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

Worked-out examples

- **Hopf link H_- :**

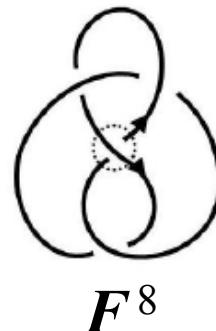
$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



- **Left-handed trefoil knot T^L :**

$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

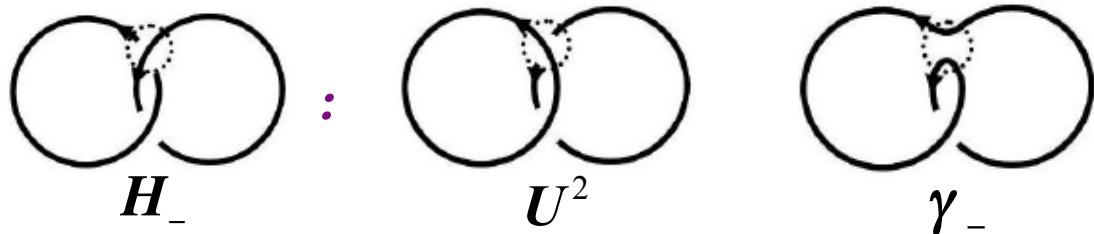
- **Figure-of-eight knot F^8 :**



Worked-out examples

- **Hopf link H_- :**

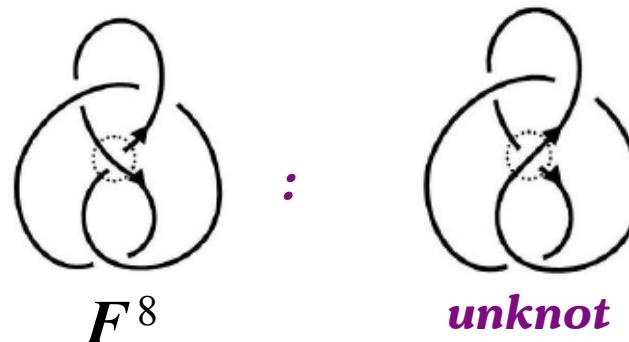
$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



- **Left-handed trefoil knot T^L :**

$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

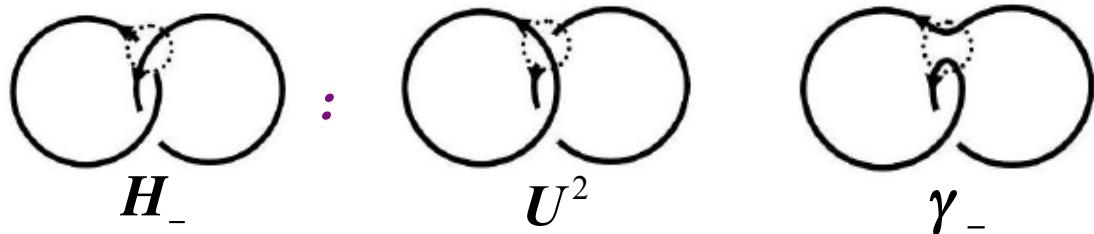
- **Figure-of-eight knot F^8 :**



Worked-out examples

- **Hopf link H_- :**

$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$



- **Left-handed trefoil knot T^L :**

$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

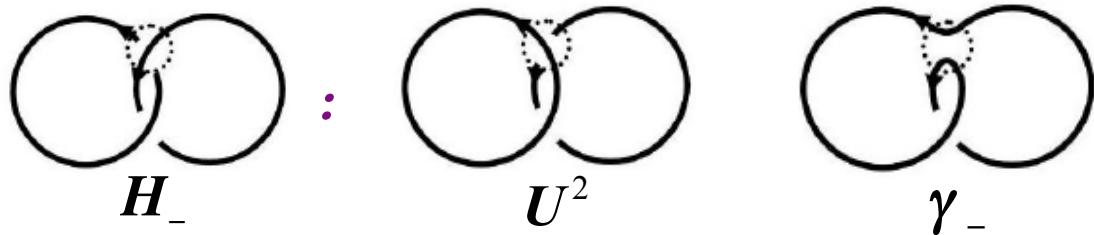


- **Figure-of-eight knot F^8 :**

Worked-out examples

- **Hopf link H_- :**

$$V(H_-) = -\tau^{-\frac{1}{2}} - \tau^{-\frac{5}{2}}$$

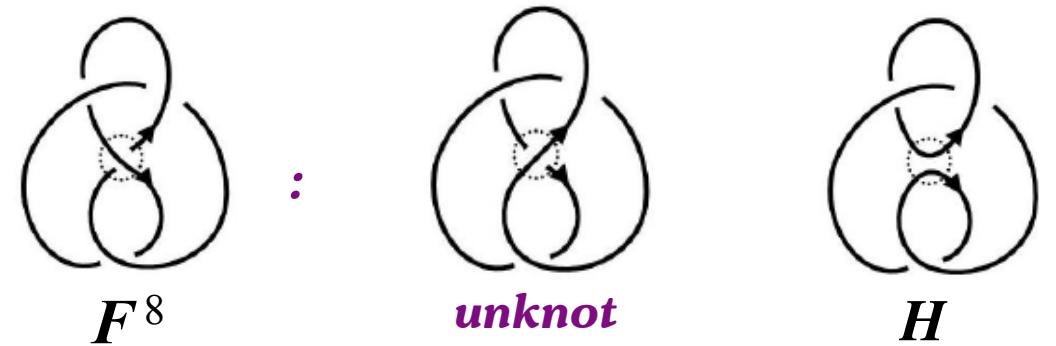


- **Left-handed trefoil knot T^L :**

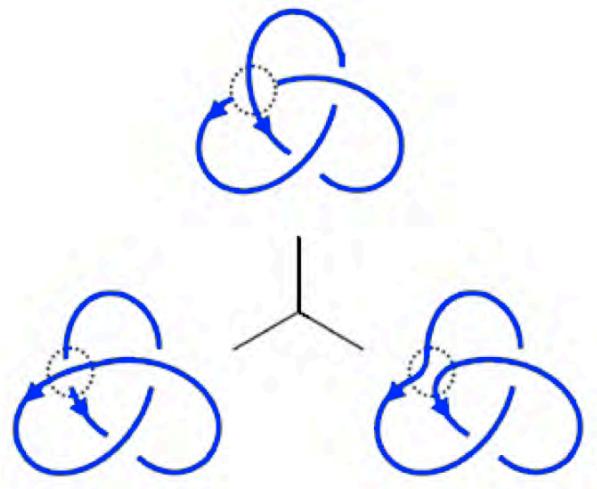
$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

- **Figure-of-eight knot F^8 :**

$$V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$

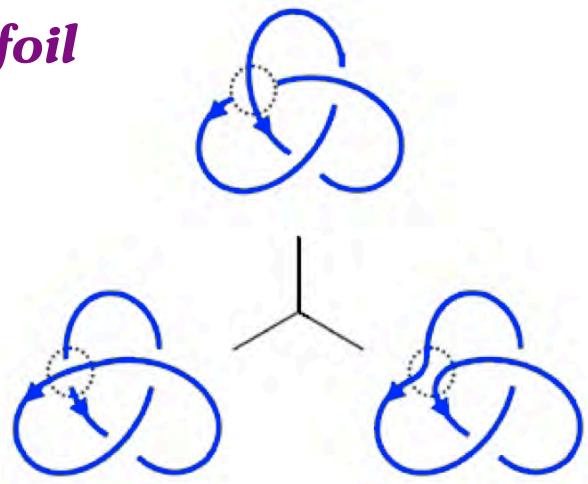


Jones distinguishes mirror knots



Jones distinguishes mirror knots

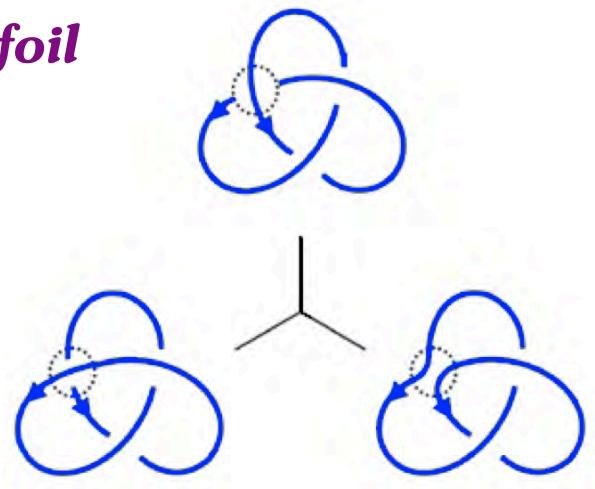
Left trefoil



$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

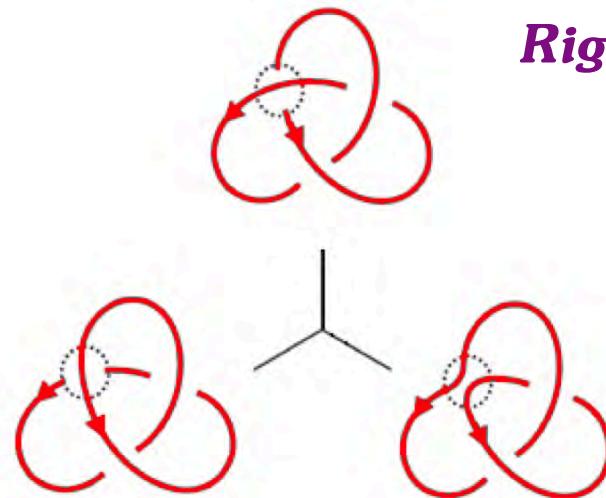
Jones distinguishes mirror knots

Left trefoil



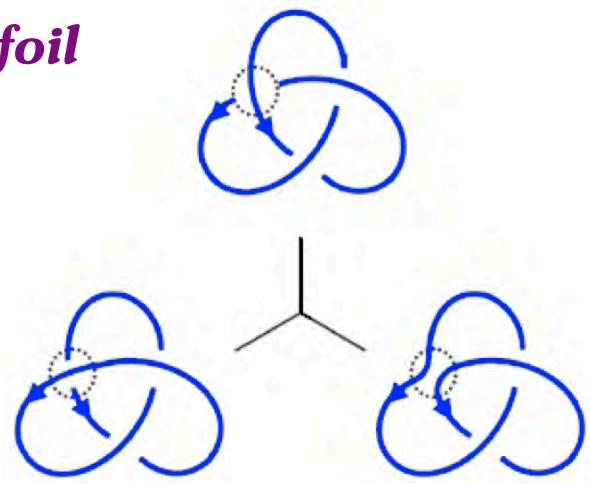
$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

Right trefoil



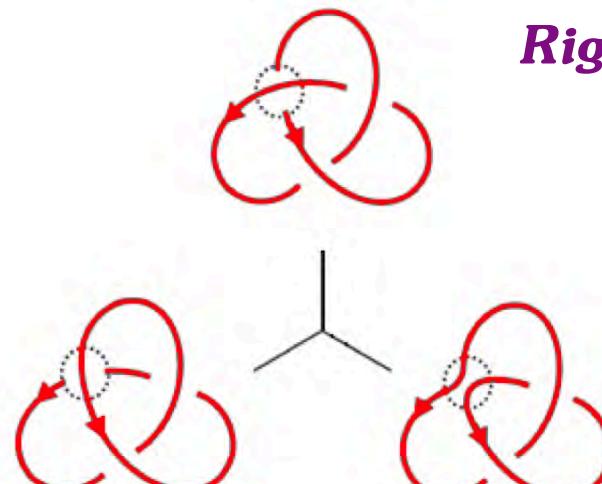
Jones distinguishes mirror knots

Left trefoil



$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

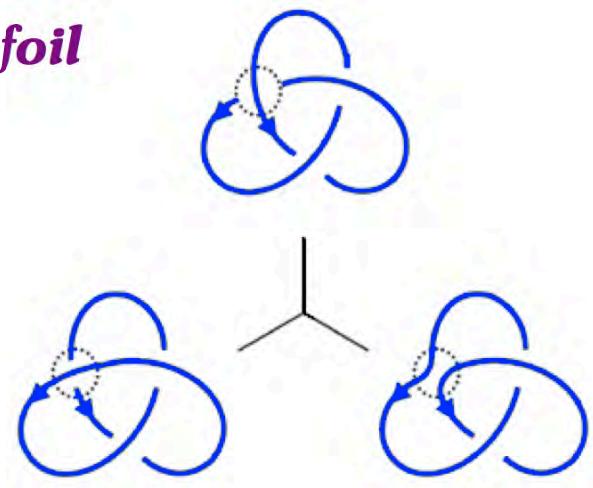
Right trefoil



$$V(T^R) = \tau + \tau^3 - \tau^4$$

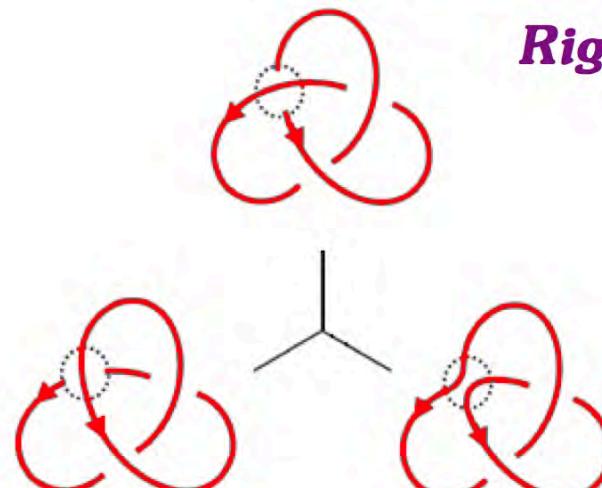
Jones distinguishes mirror knots

Left trefoil



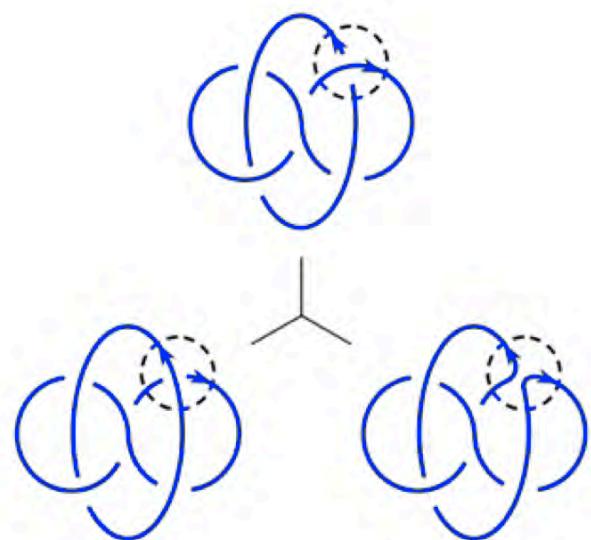
$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

Right trefoil



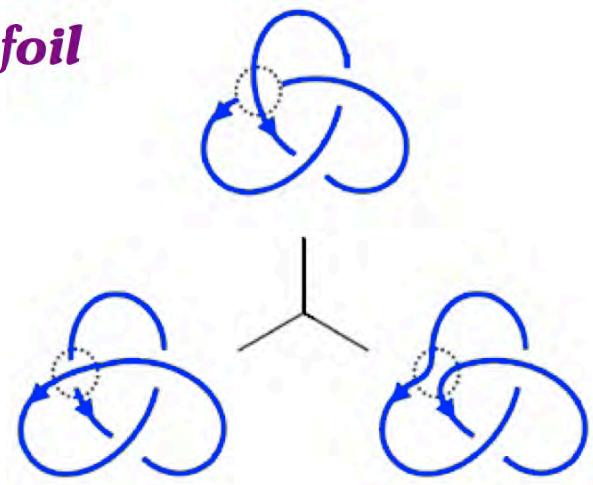
$$V(T^R) = \tau + \tau^3 - \tau^4$$

Whitehead link



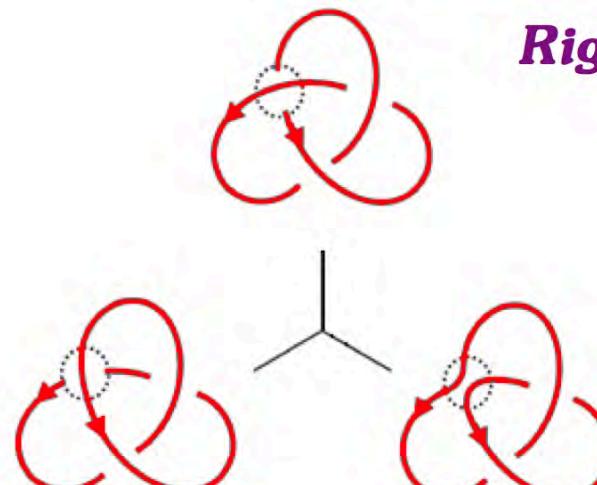
Jones distinguishes mirror knots

Left trefoil



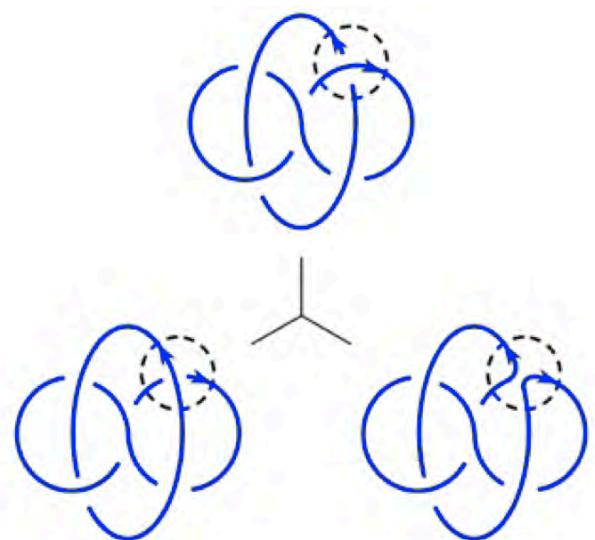
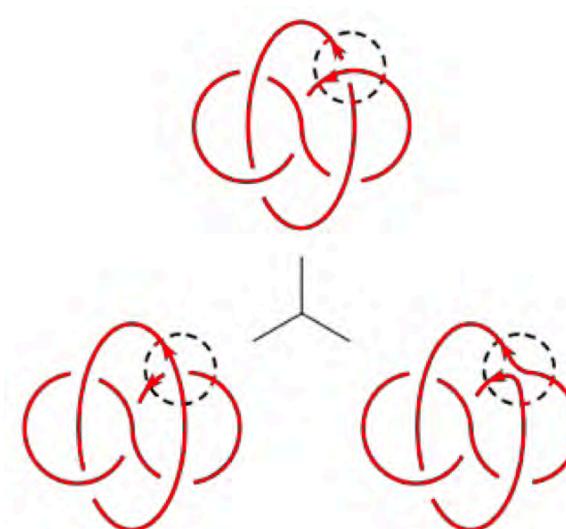
$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

Right trefoil



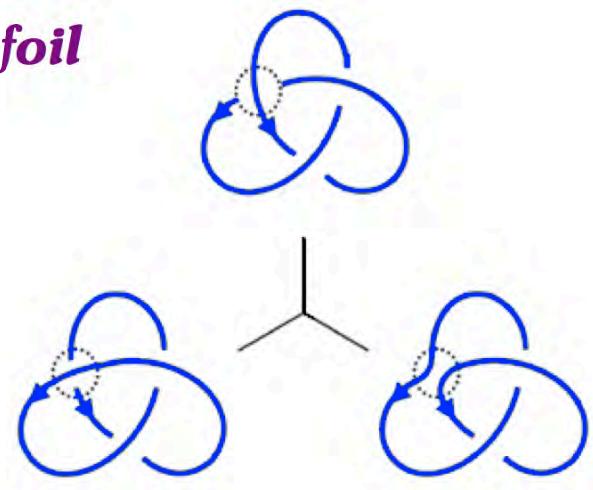
$$V(T^R) = \tau + \tau^3 - \tau^4$$

Whitehead link



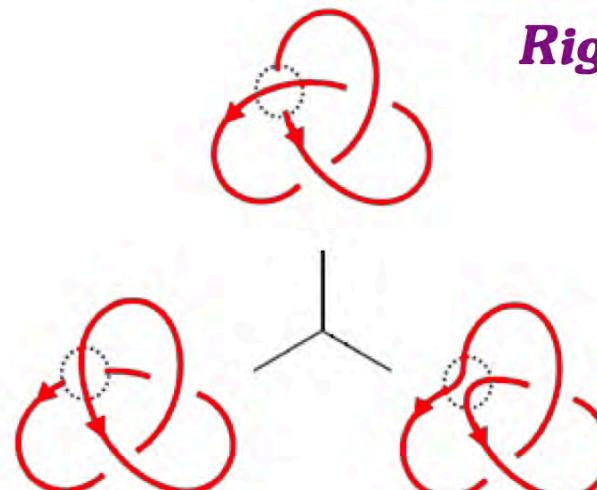
Jones distinguishes mirror knots

Left trefoil



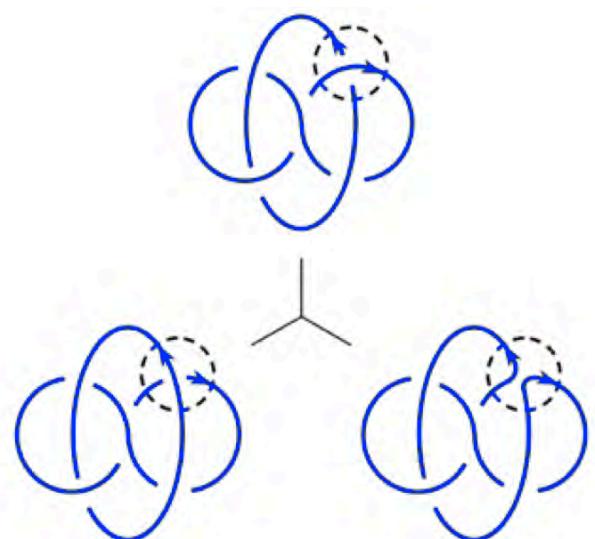
$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

Right trefoil



$$V(T^R) = \tau + \tau^3 - \tau^4$$

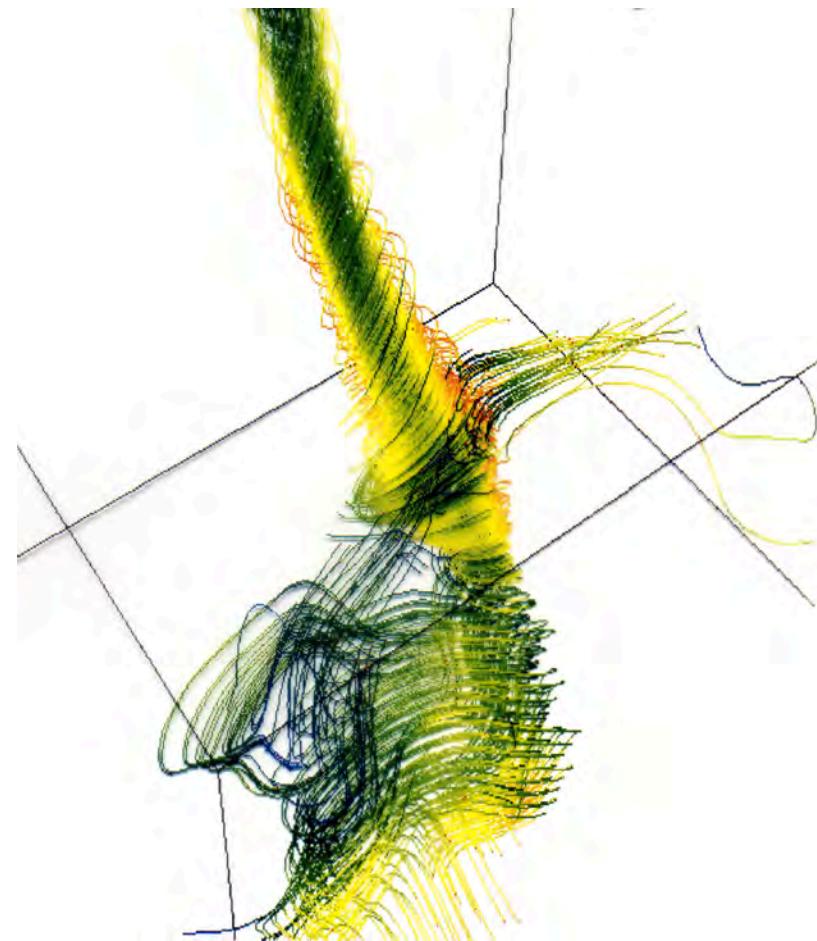
Whitehead link



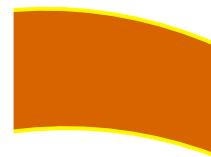
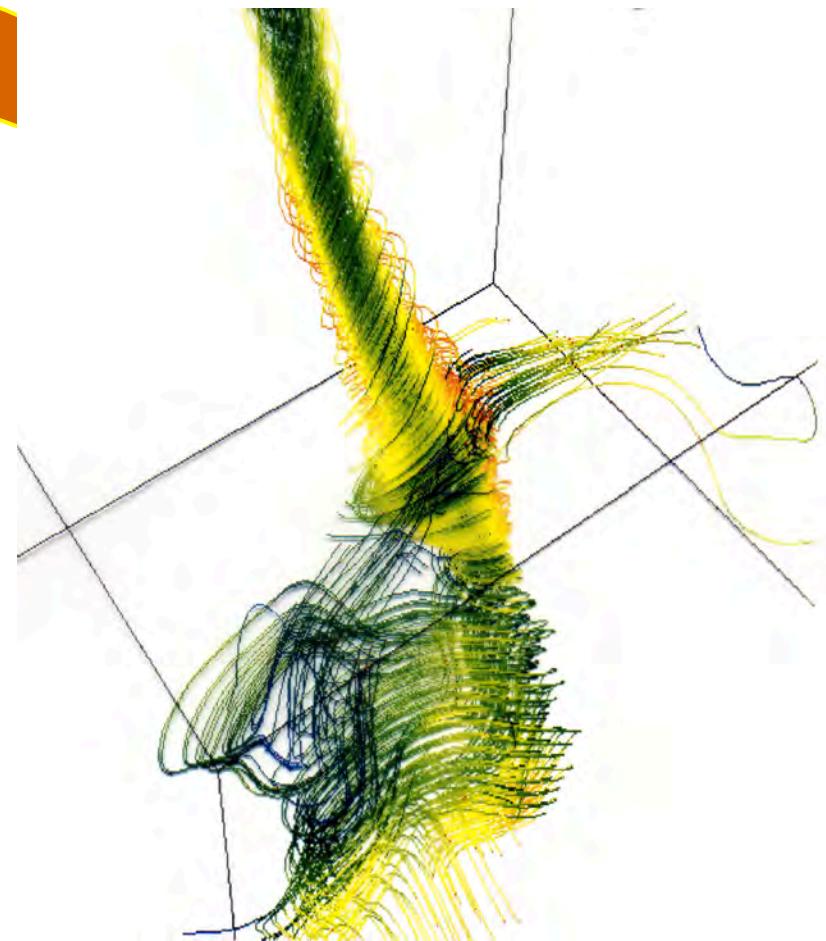
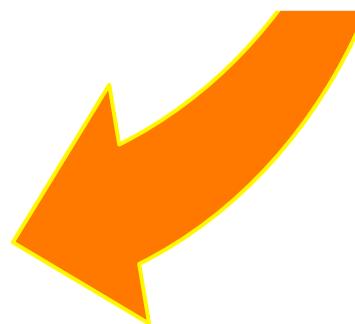
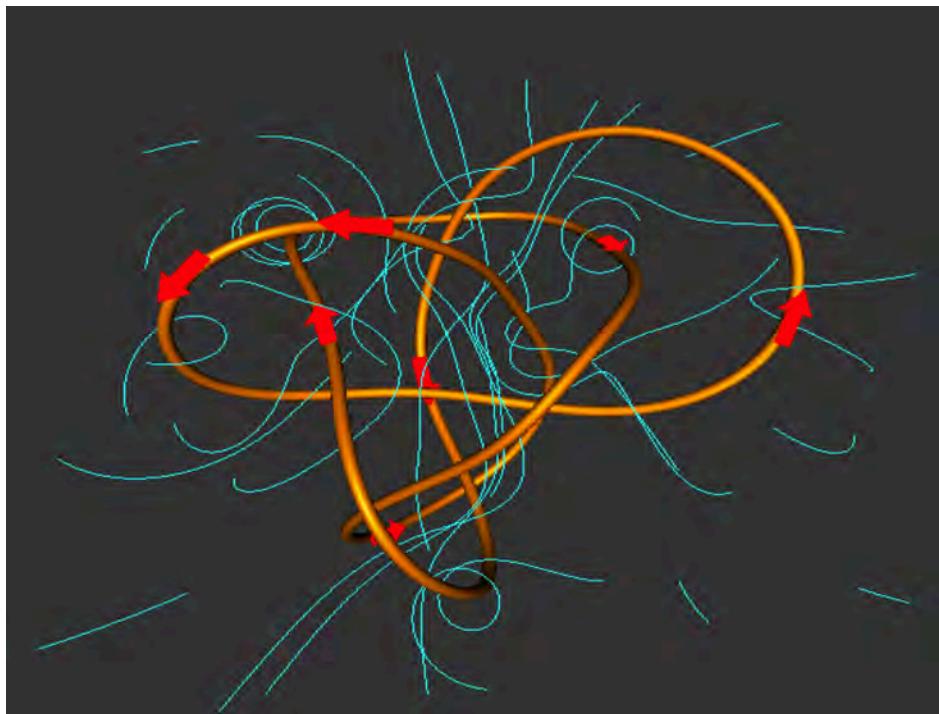
$$V(W) = \tau^{-\frac{7}{2}} - 2\tau^{-\frac{5}{2}} + \tau^{-\frac{3}{2}} - 2\tau^{-\frac{1}{2}} + \tau^{\frac{1}{2}} - \tau^{\frac{3}{2}}$$

From Leonardo to visiometrics

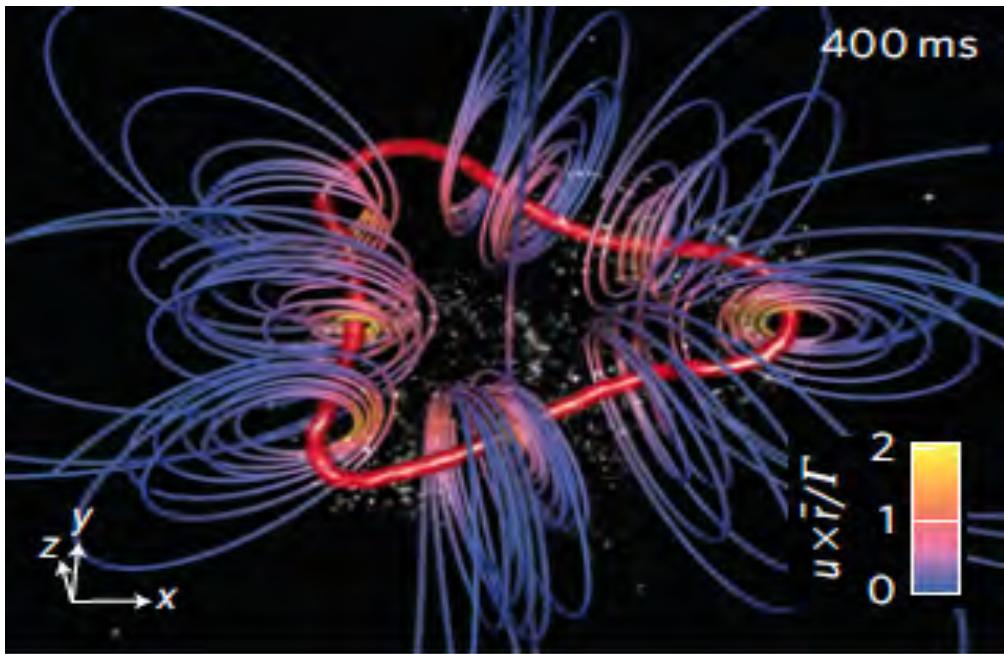
From Leonardo to visiometrics



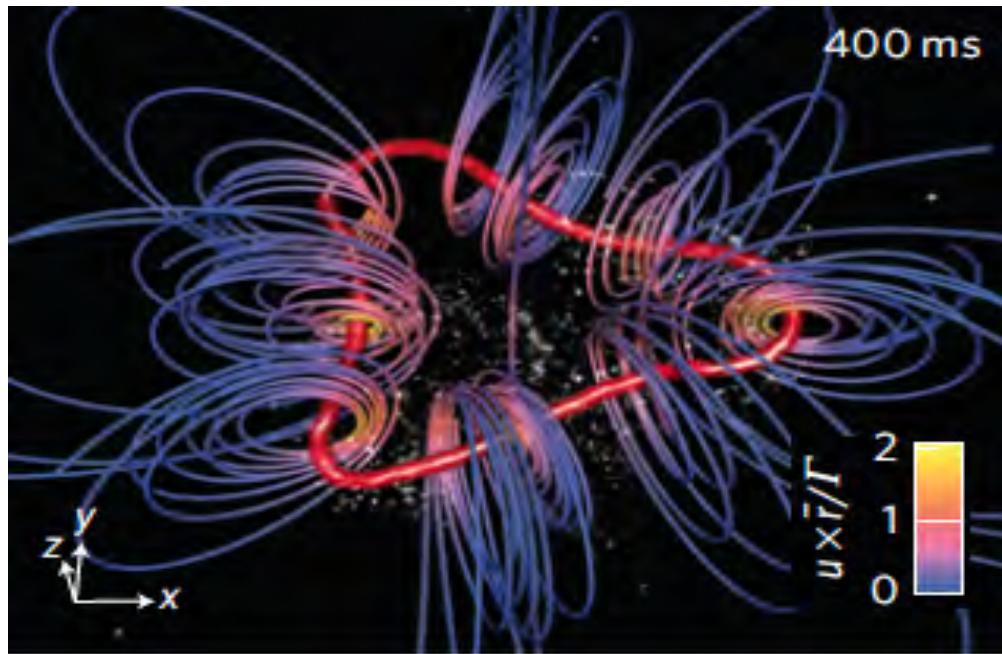
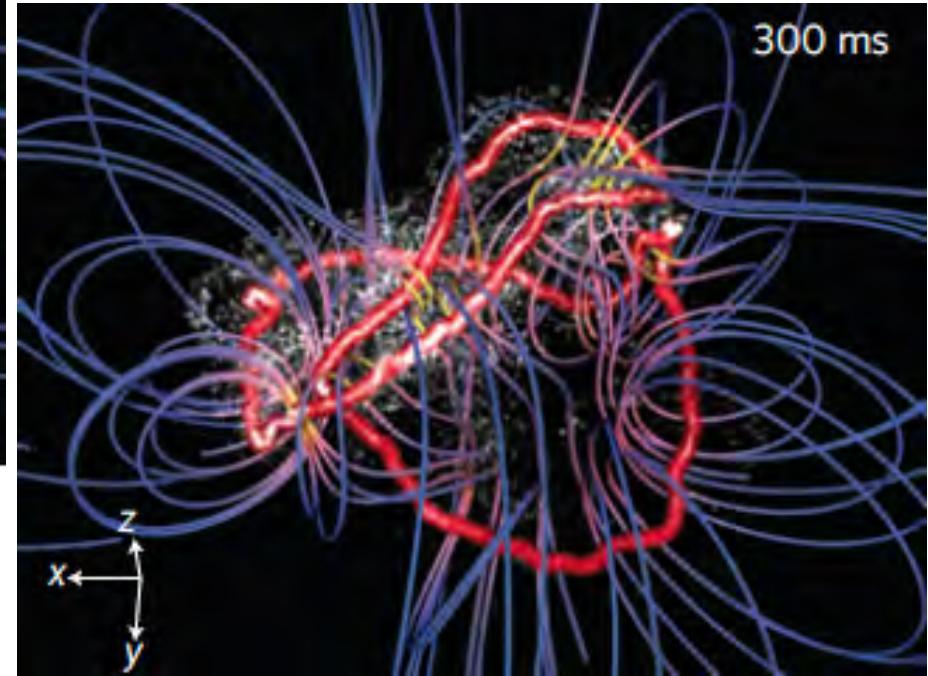
From Leonardo to visiometrics



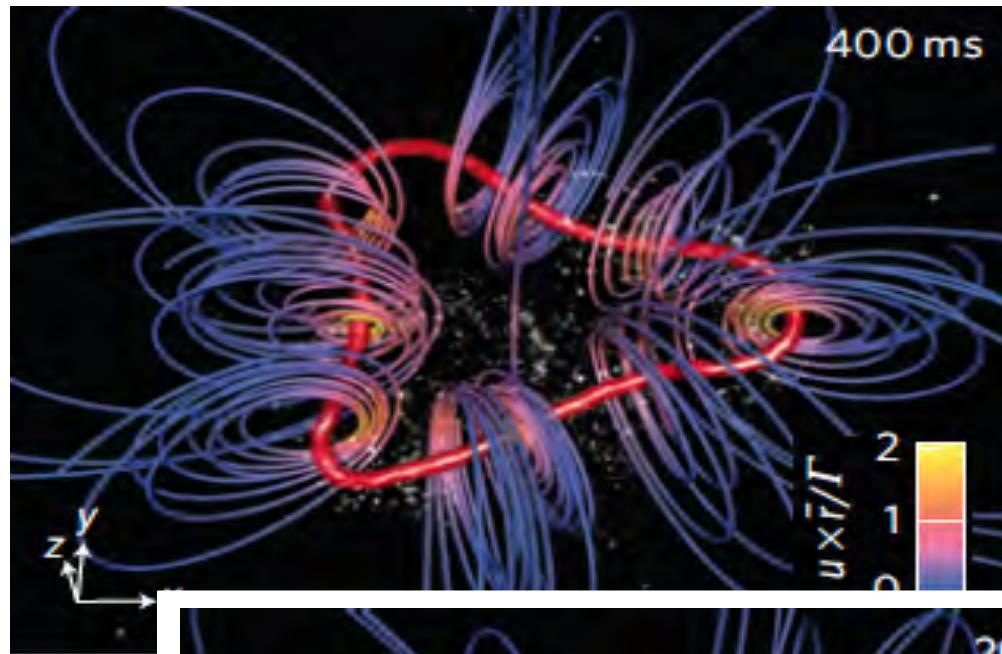
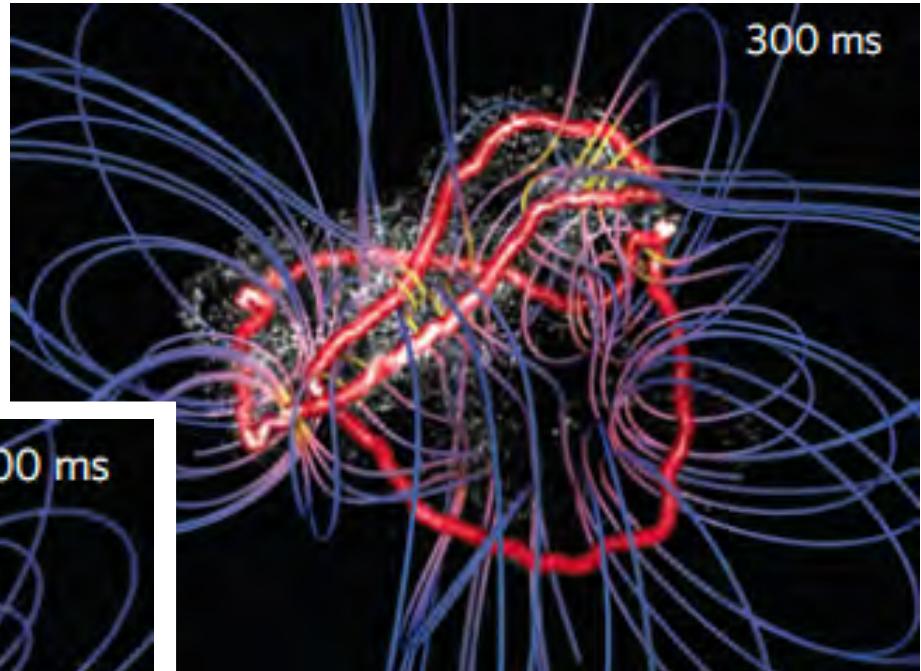
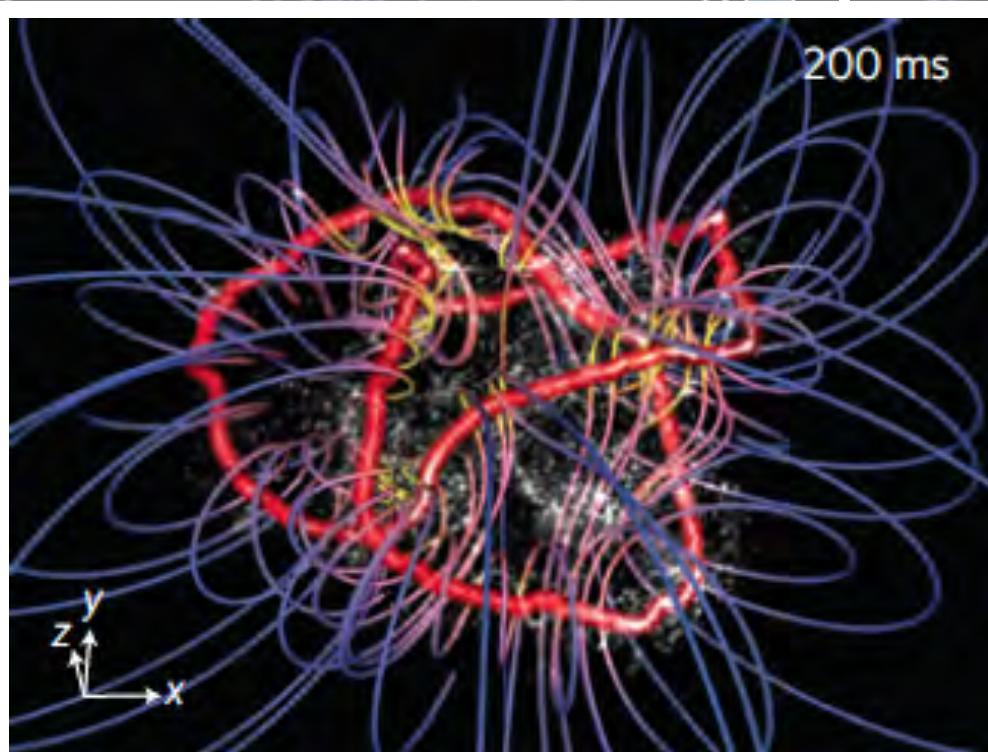
Examples of topological visiometrics



Examples of topological visiometrics



Examples of topological visiometrics



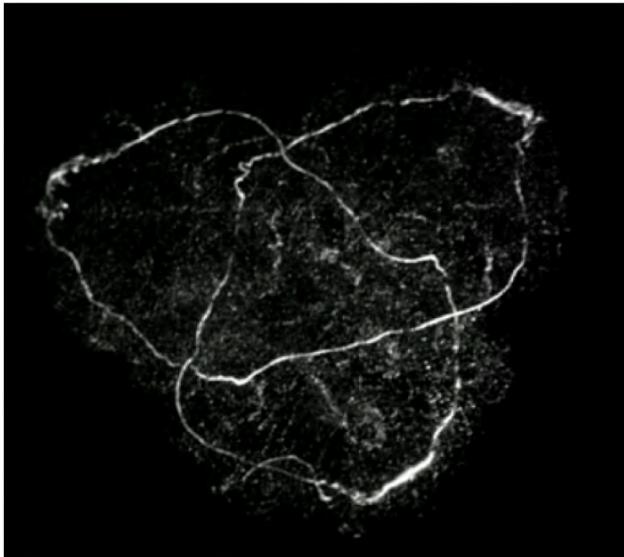
Scharein (KnotPlot)

Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)

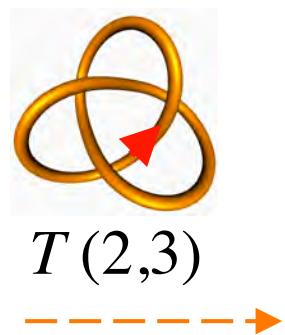


$t = 1$

Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)

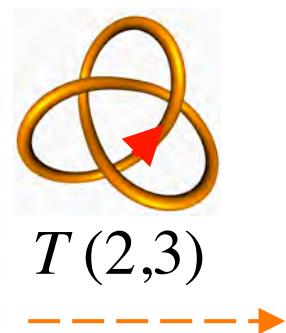
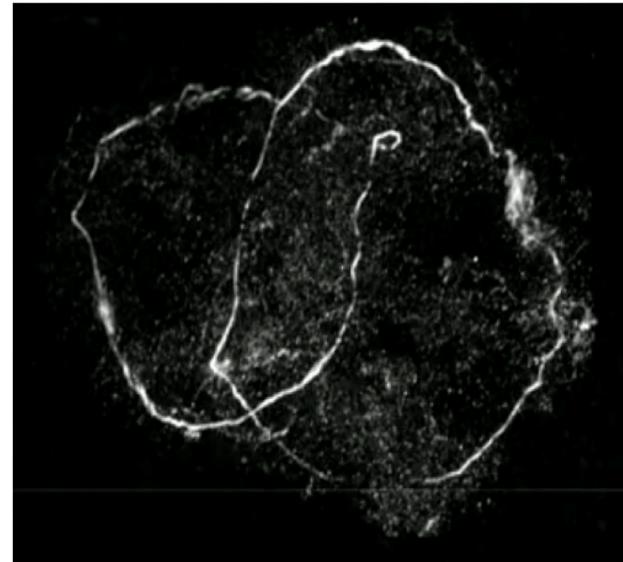


$t = 1$



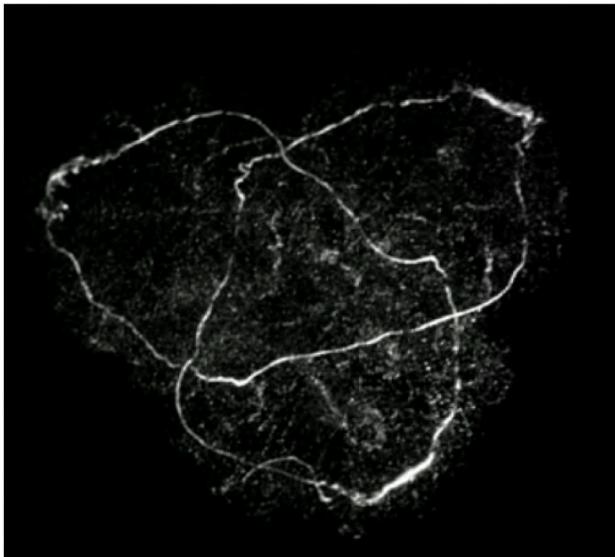
Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)

$t = 1$

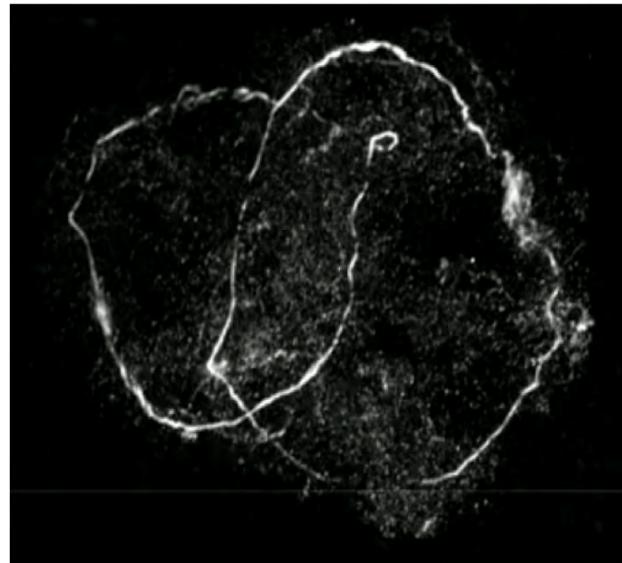


$t = 2$

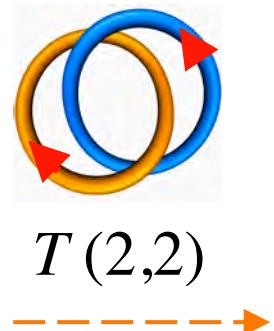
Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)



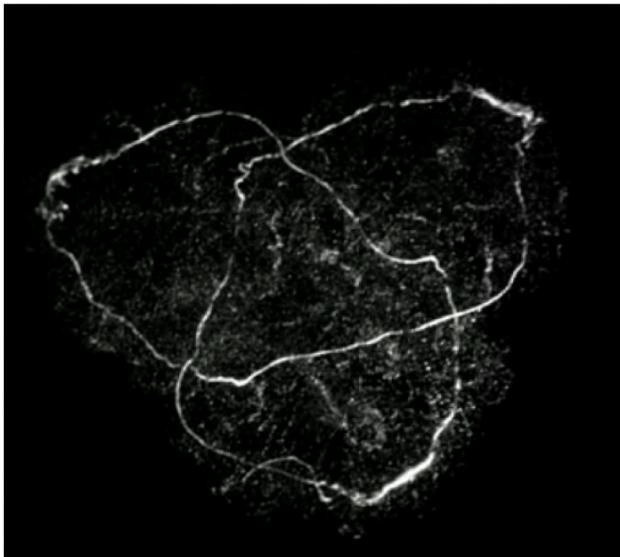
$t = 1$



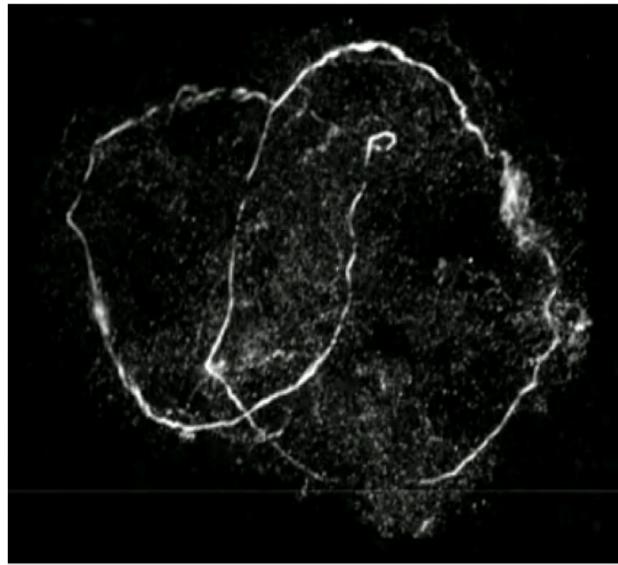
$t = 2$



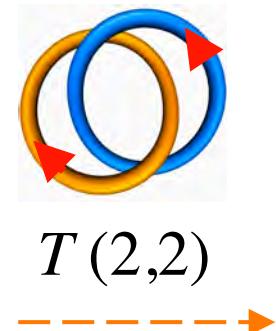
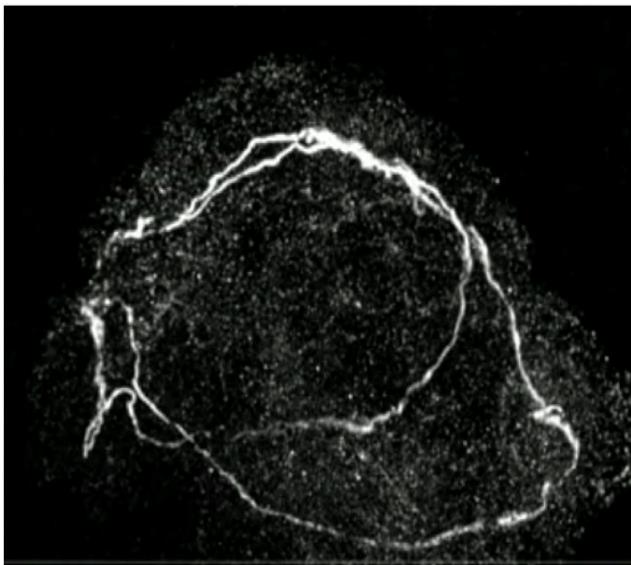
Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)



$t = 1$

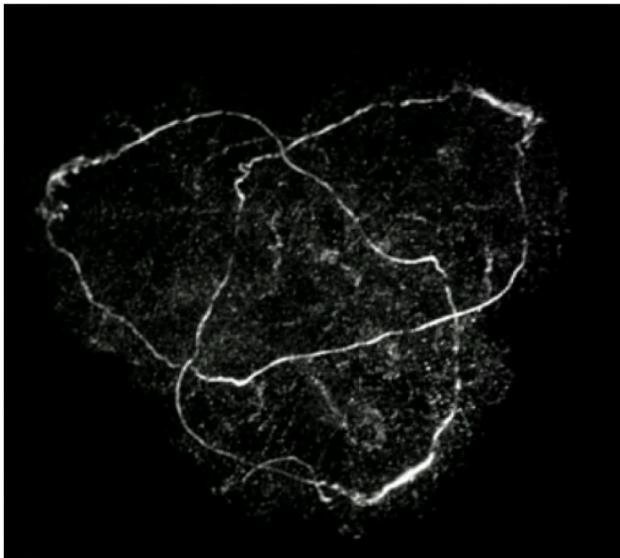


$t = 2$

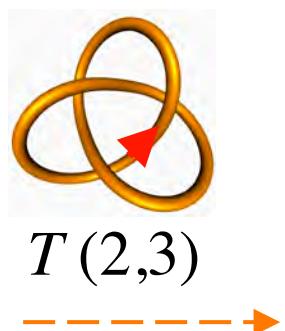
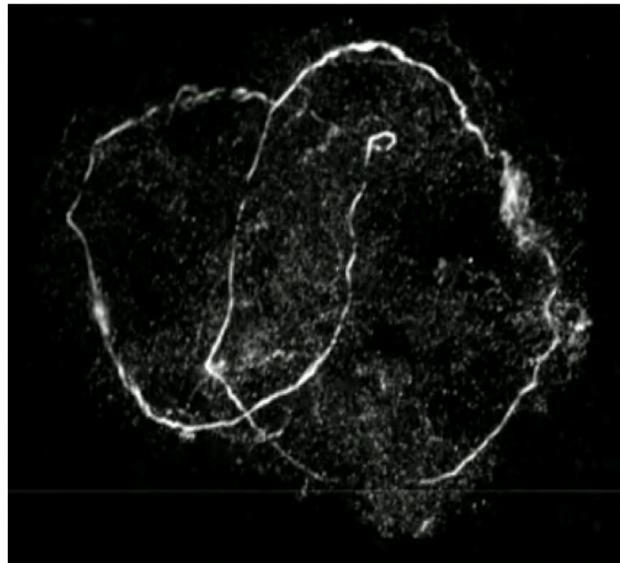


$t = 3$

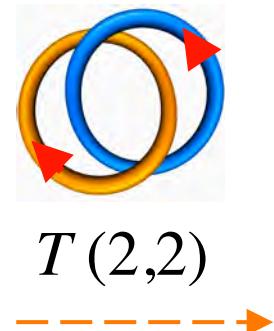
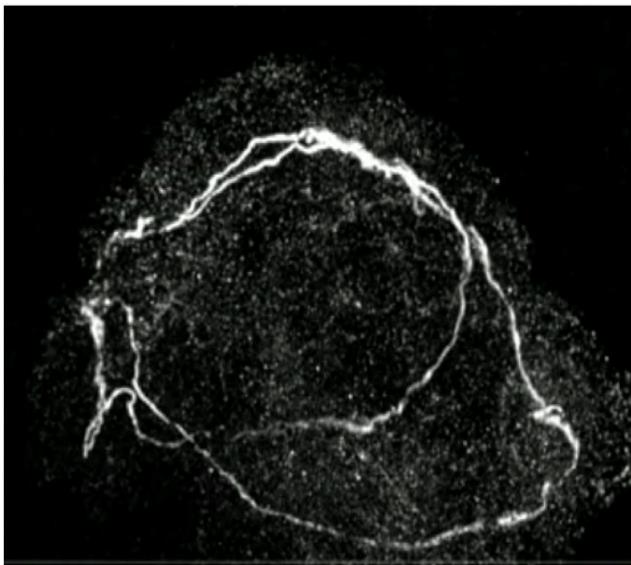
Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)



$t = 1$

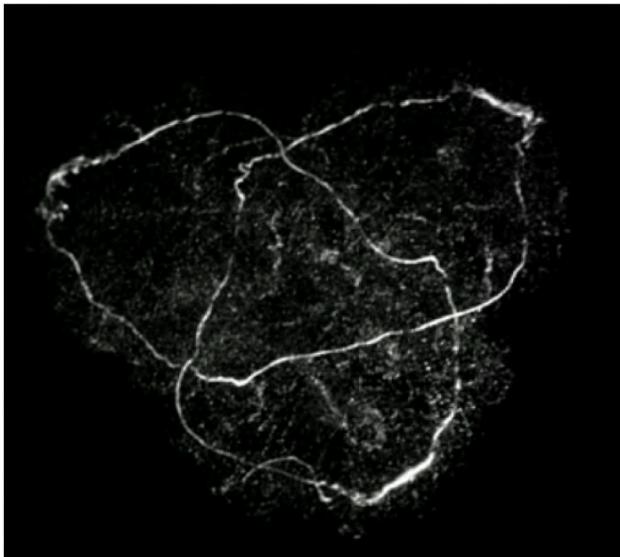


$t = 2$

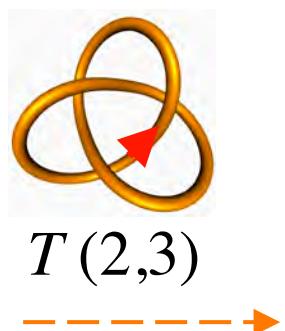
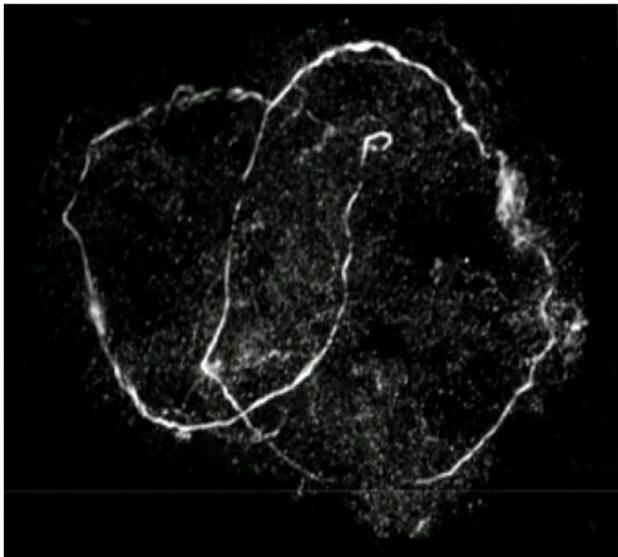


$t = 3$

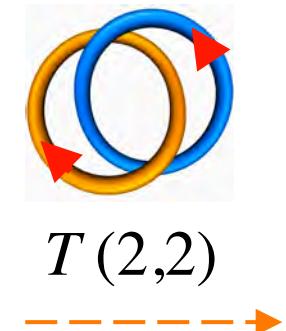
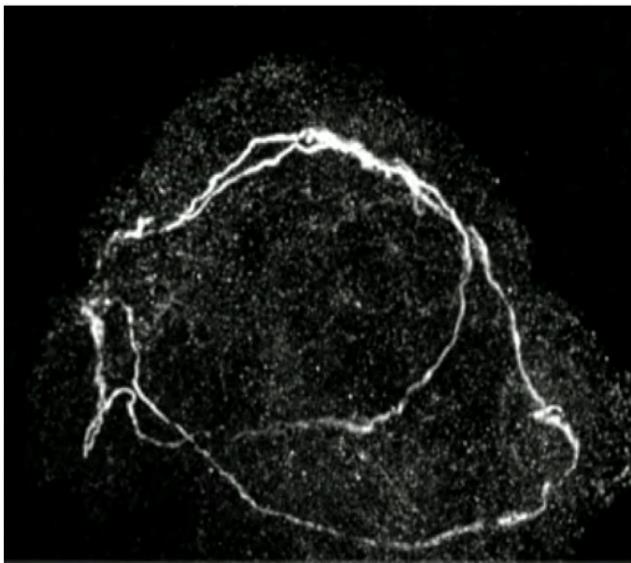
Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)



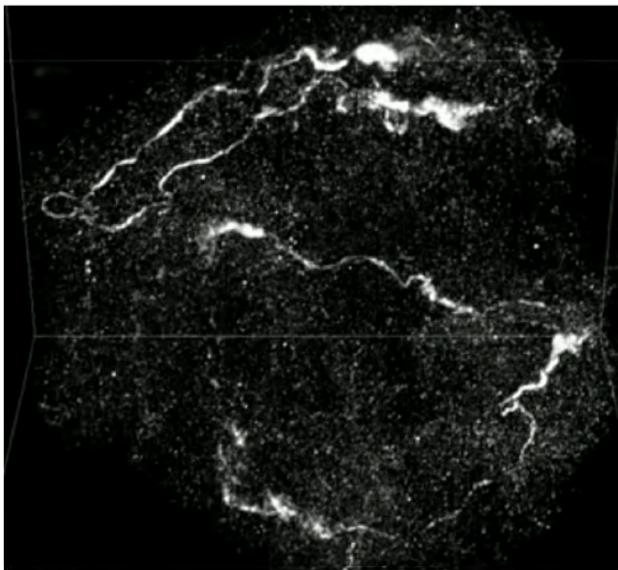
$t = 1$



$t = 2$

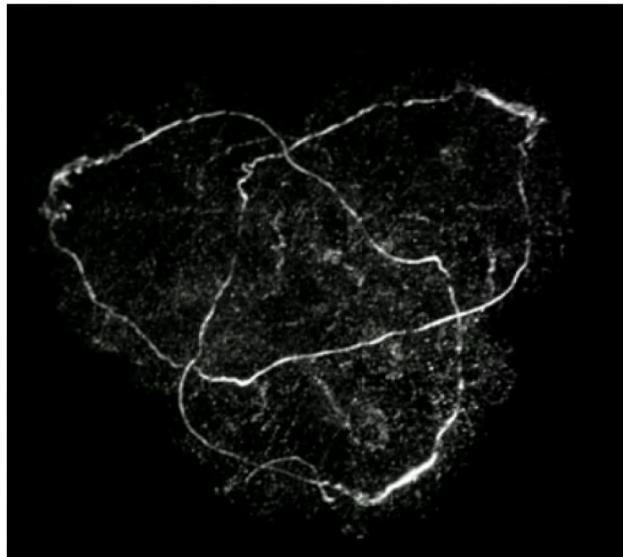


$t = 3$

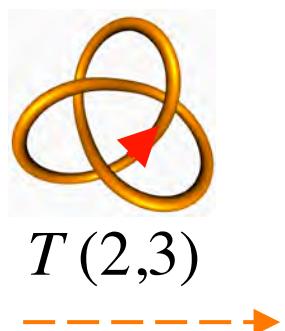
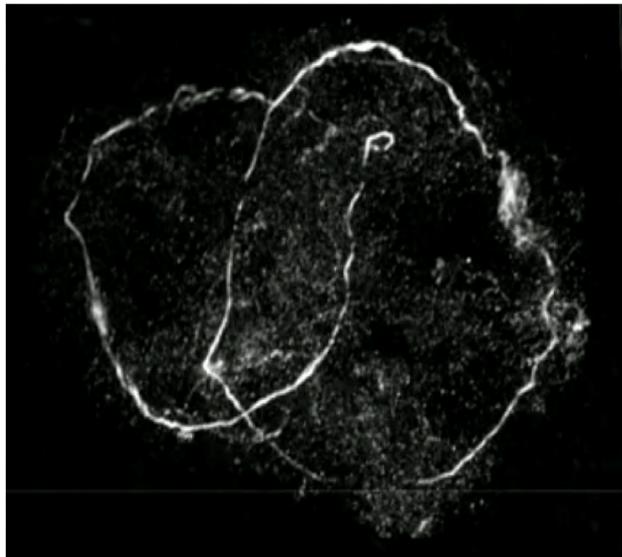


$t = 4$

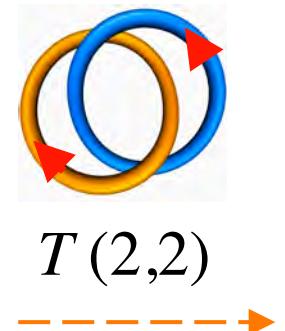
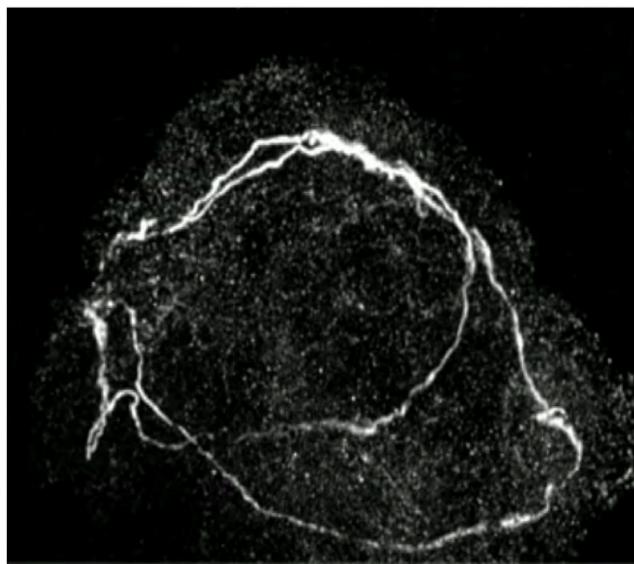
Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)



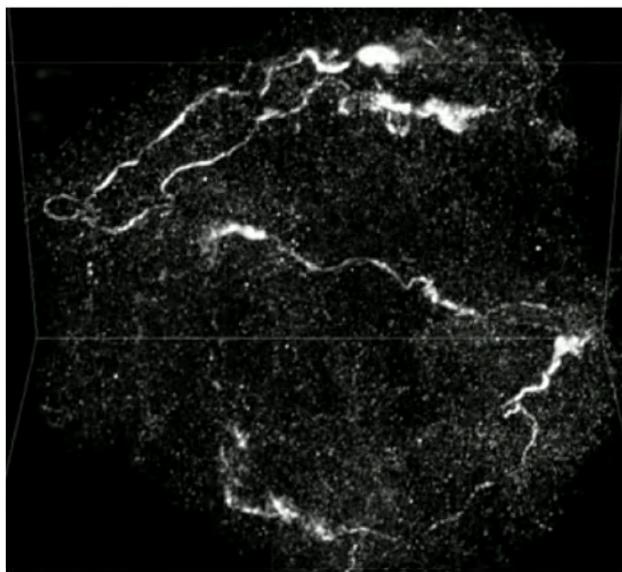
$t = 1$



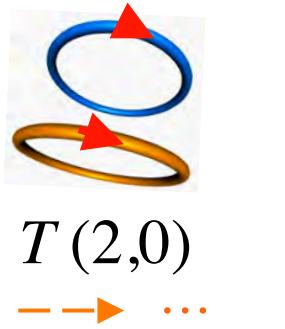
$t = 2$



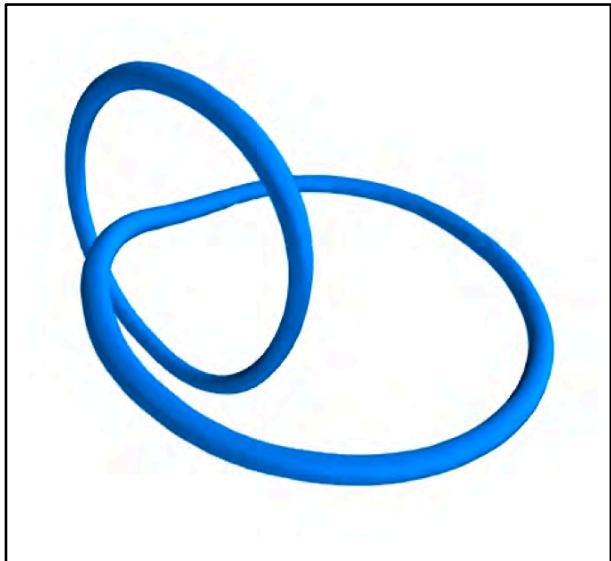
$t = 3$



$t = 4$

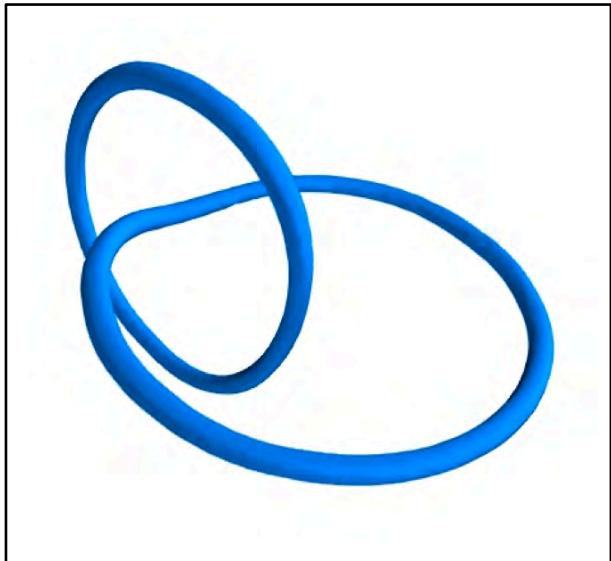


Production of a vortex link in BECs (Zuccher & Ricca, submitted)



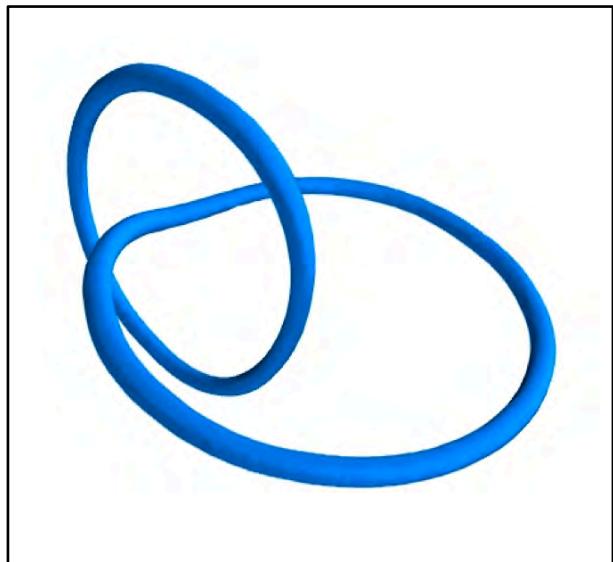
$t = 1$

Production of a vortex link in BECs (Zuccher & Ricca, submitted)

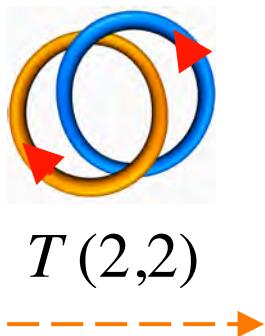
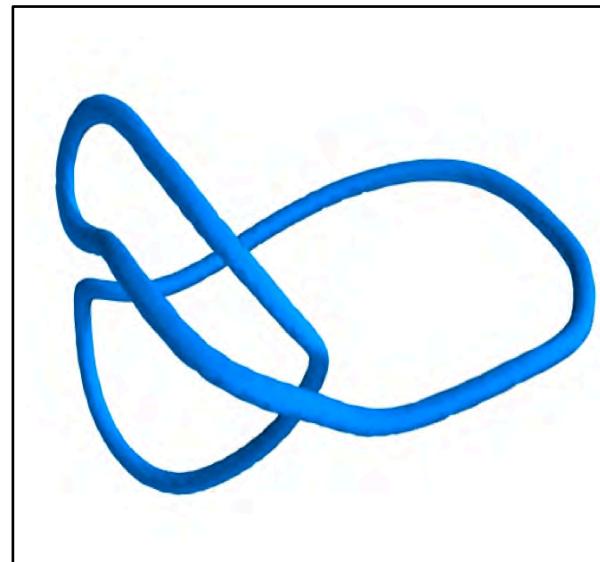


$t = 1$

Production of a vortex link in BECs (Zuccher & Ricca, submitted)

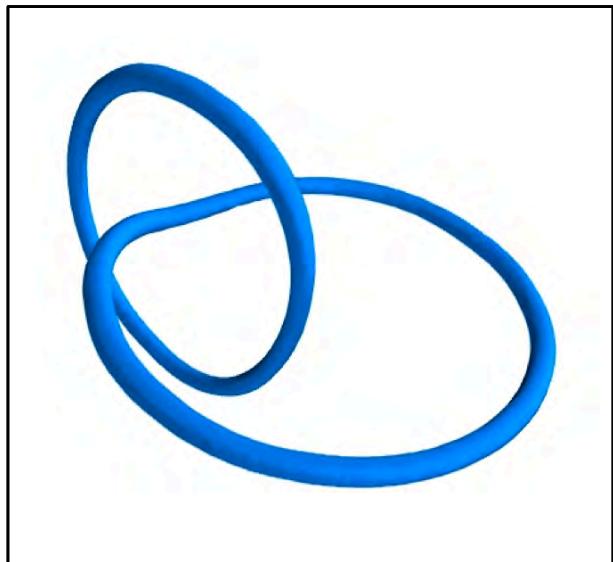


$t = 1$

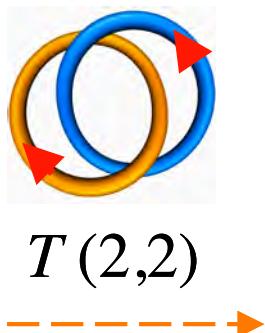
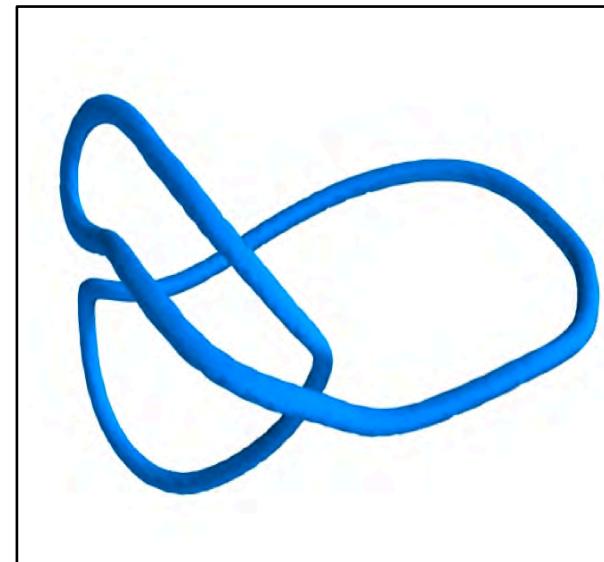


$t = 2$

Production of a vortex link in BECs (Zuccher & Ricca, submitted)

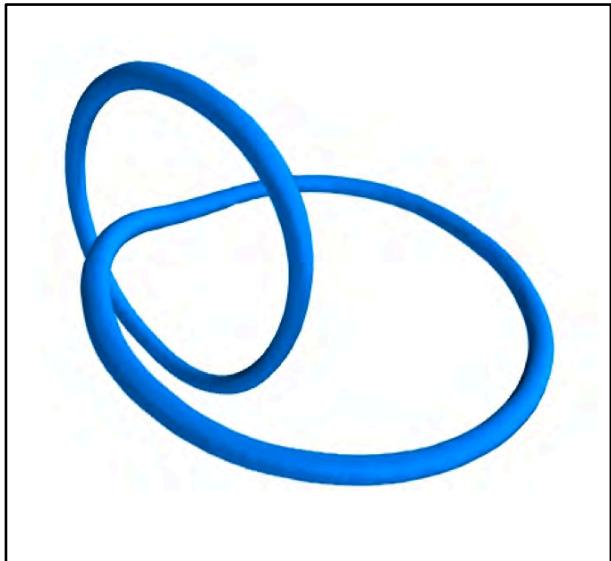


$t = 1$

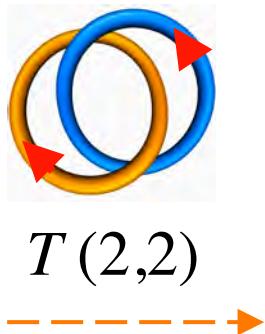
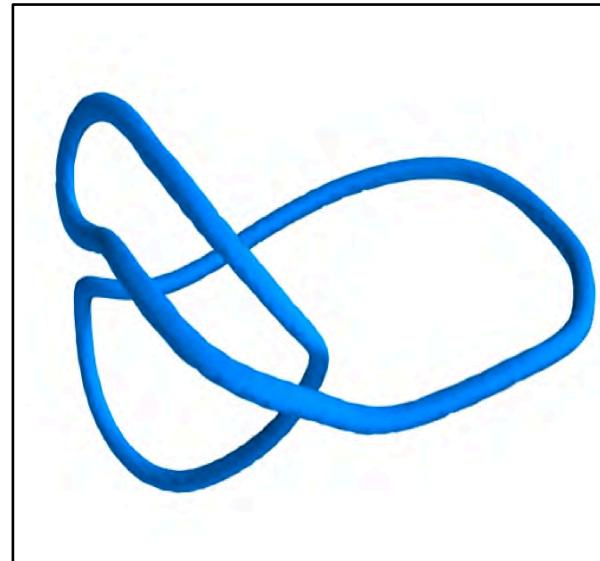


$t = 2$

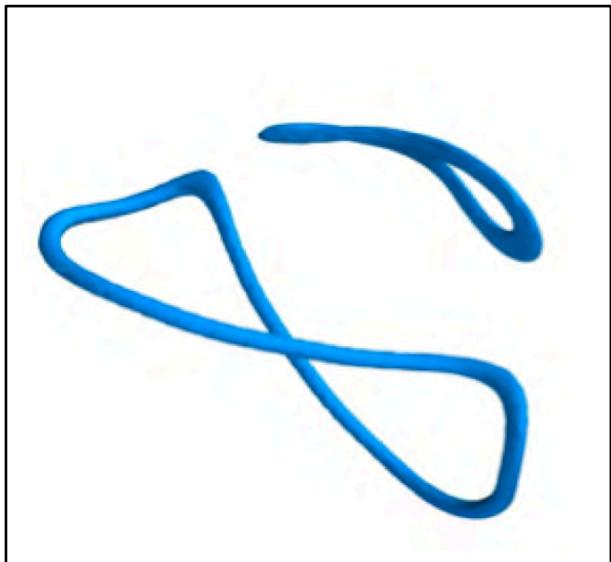
Production of a vortex link in BECs (Zuccher & Ricca, submitted)



$t = 1$

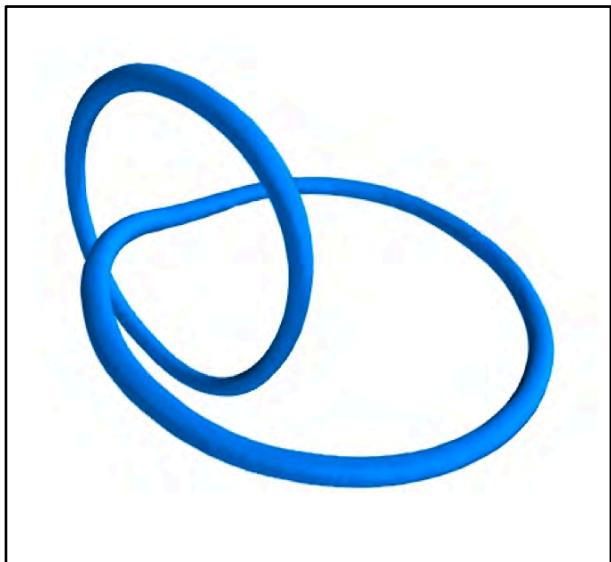


$t = 2$



$t = 3$

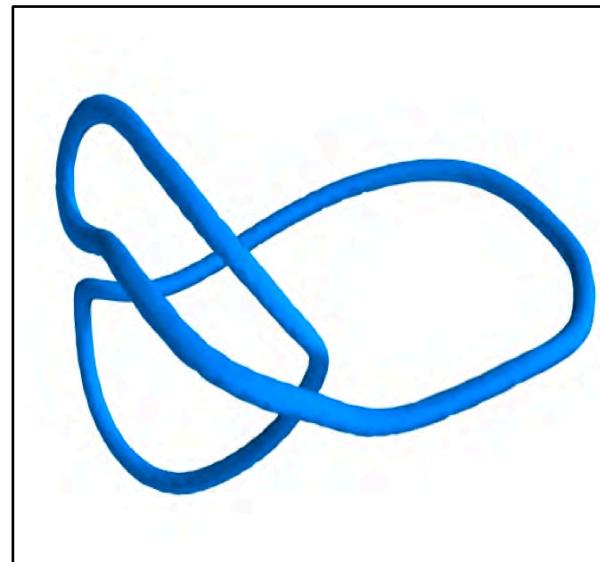
Production of a vortex link in BECs (Zuccher & Ricca, submitted)



$t = 1$

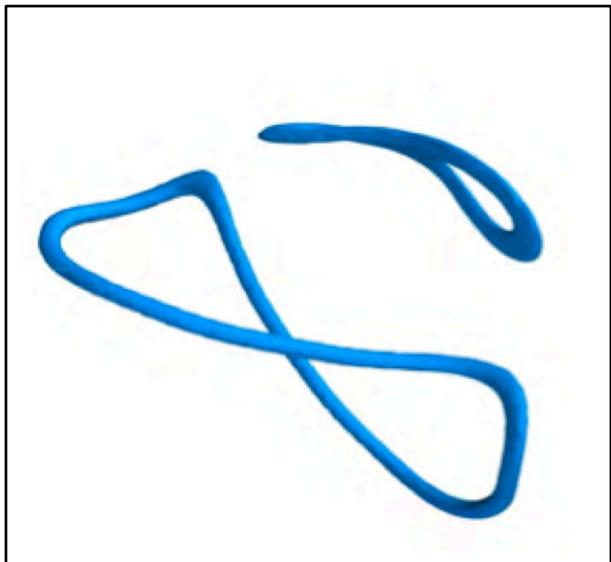


$T(2,2)$

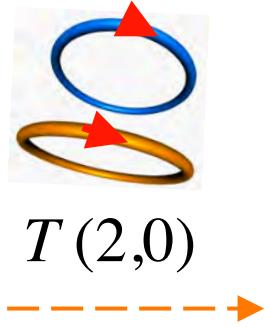


$t = 2$

$T(2,1)$

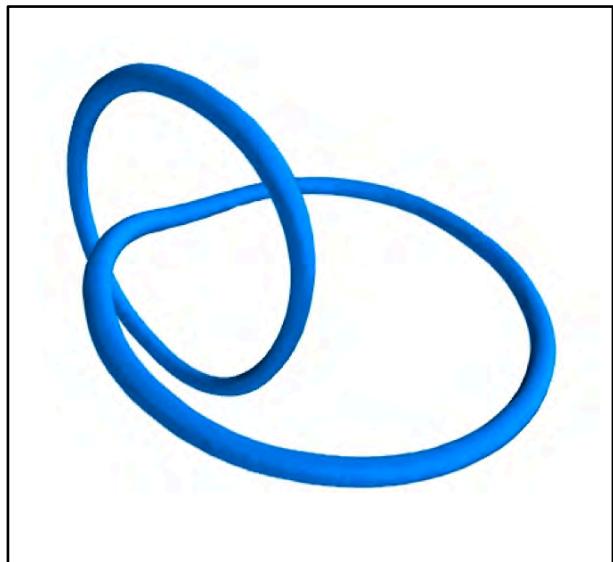


$t = 3$

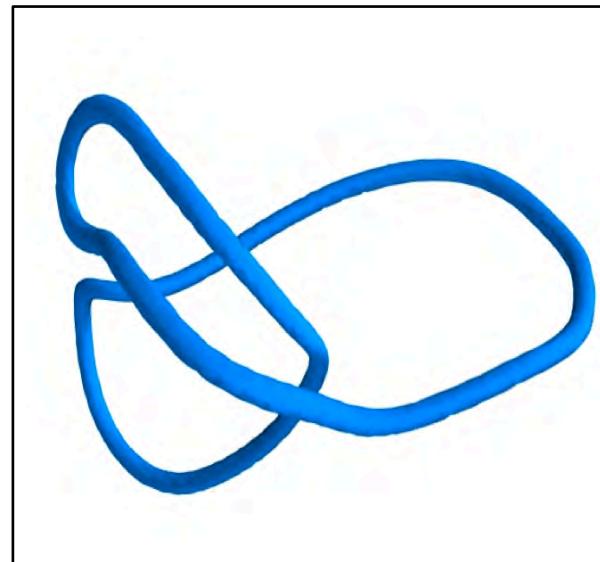


$T(2,0)$

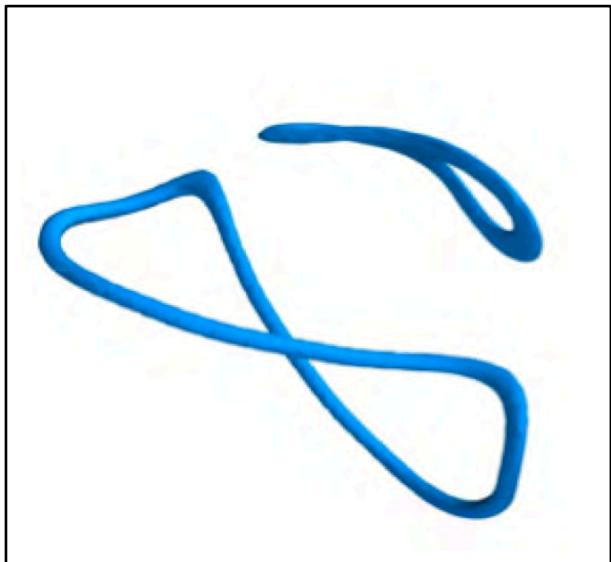
Production of a vortex link in BECs (Zuccher & Ricca, submitted)



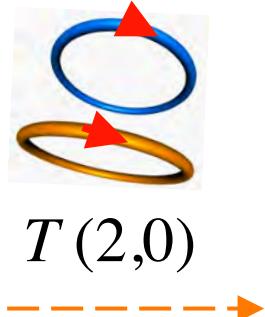
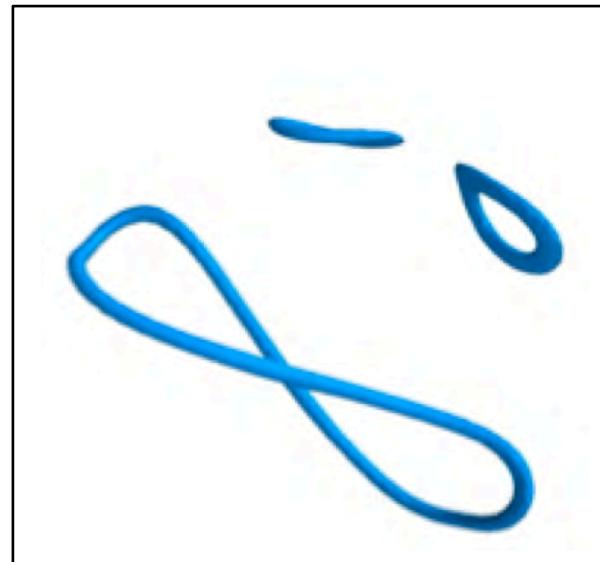
$t = 1$



$t = 2$

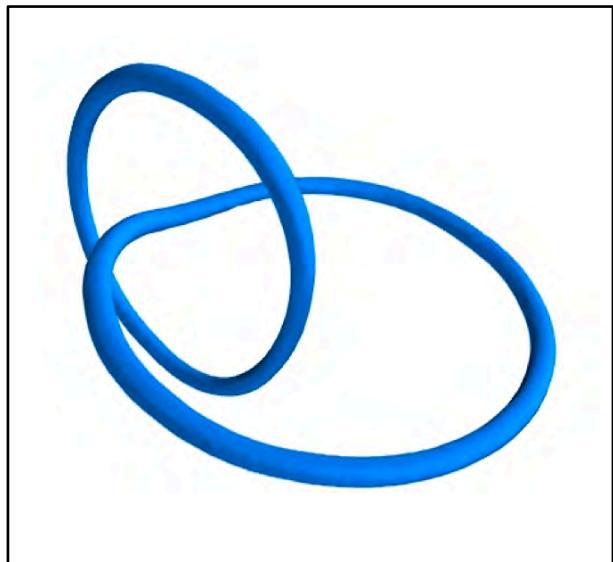


$t = 3$

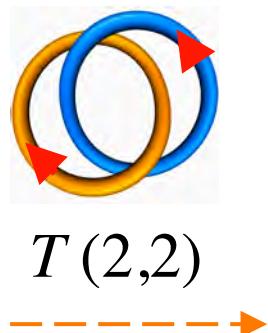
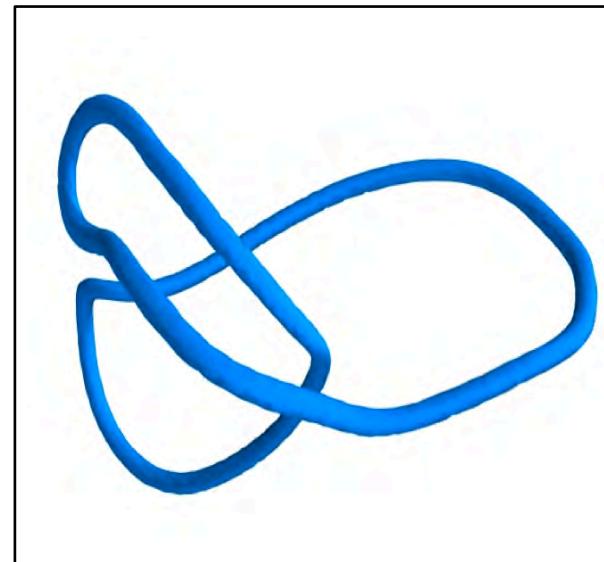


$t = 4$

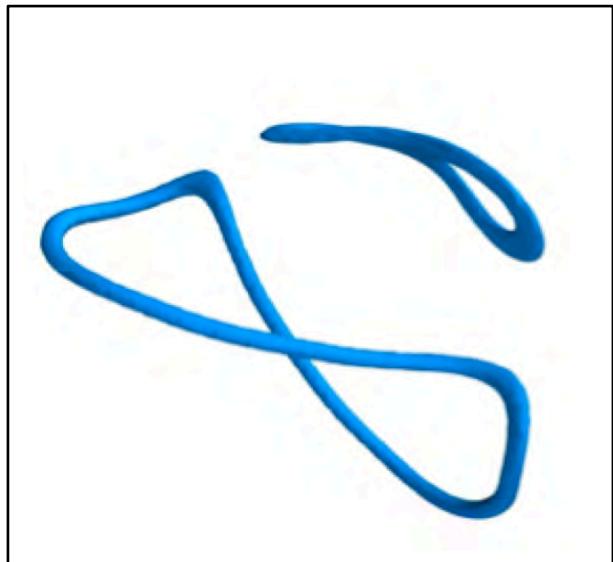
Production of a vortex link in BECs (Zuccher & Ricca, submitted)



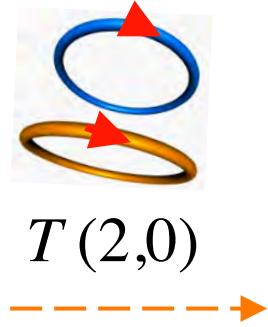
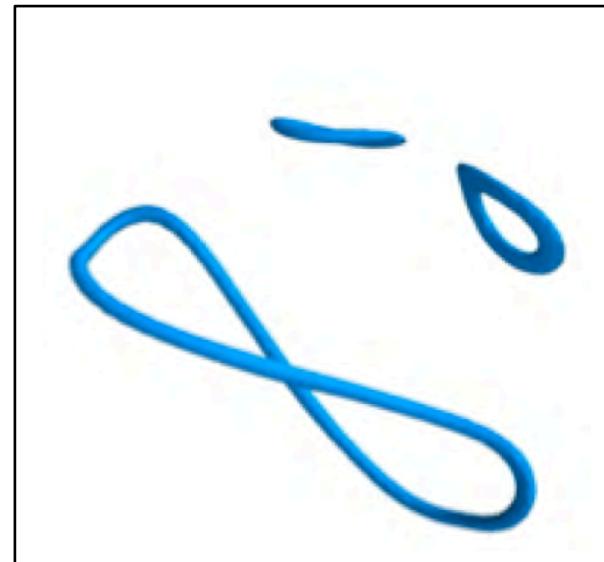
$t = 1$



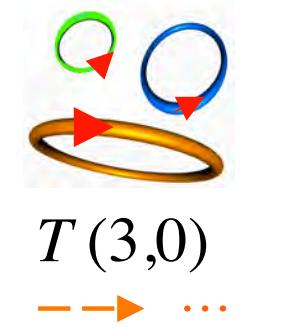
$t = 2$



$t = 3$



$t = 4$



Ideal torus knots & links cascade

Consider the cascade process:

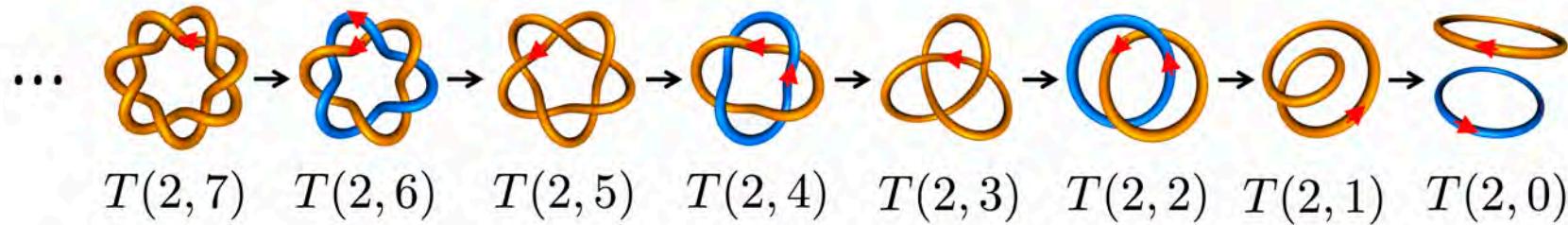
(i)

Ideal torus knots & links cascade

Consider the cascade process:

(i)

(ii)

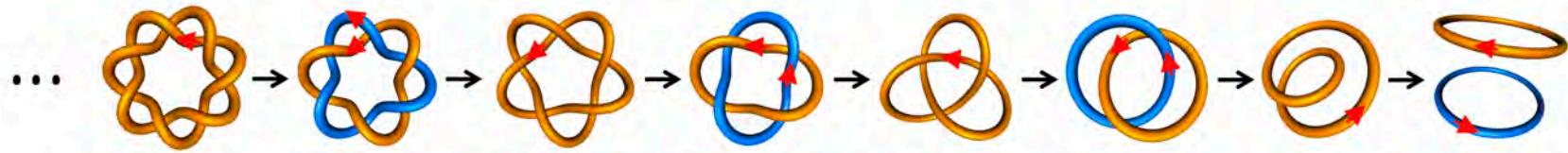


Ideal torus knots & links cascade

Consider the cascade process:

(i)

(ii)



$T(2, 7) \rightarrow T(2, 6) \rightarrow T(2, 5) \rightarrow T(2, 4) \rightarrow T(2, 3) \rightarrow T(2, 2) \rightarrow T(2, 1) \rightarrow T(2, 0)$

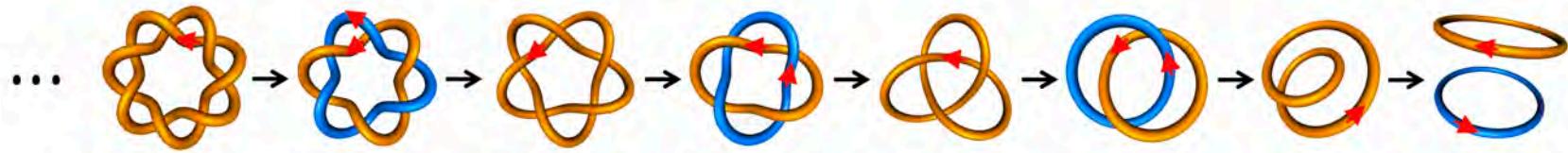
$\{T(2, n)\} : \dots \rightarrow T(2, 2n+1) \rightarrow T(2, n) \rightarrow \dots \rightarrow T(2, 0) .$

Ideal torus knots & links cascade

Consider the cascade process:

(i)

(ii)



$T(2,7) \quad T(2,6) \quad T(2,5) \quad T(2,4) \quad T(2,3) \quad T(2,2) \quad T(2,1) \quad T(2,0)$

$\{T(2,n)\} : \dots \rightarrow T(2,2n+1) \rightarrow T(2,n) \rightarrow \dots \rightarrow T(2,0) .$

Assumptions:

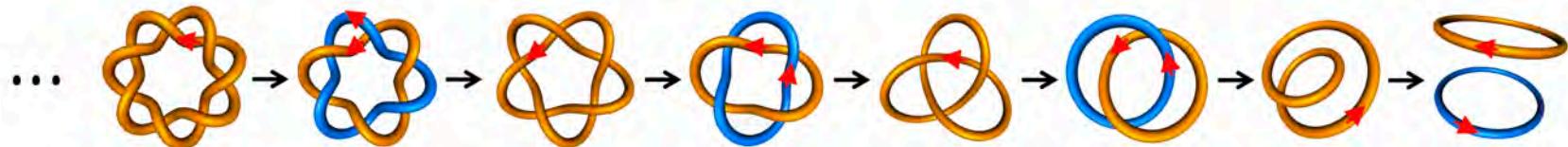
- **all torus knots $T(2,2n+1)$ and links $T(2,2n)$ are standardly embedded on a mathematical torus in closed braid form;**

Ideal torus knots & links cascade

Consider the cascade process:

(i)

(ii)



$T(2,7) \quad T(2,6) \quad T(2,5) \quad T(2,4) \quad T(2,3) \quad T(2,2) \quad T(2,1) \quad T(2,0)$

$\{T(2,n)\} : \dots \rightarrow T(2,2n+1) \rightarrow T(2,n) \rightarrow \dots \rightarrow T(2,0) .$

Assumptions:

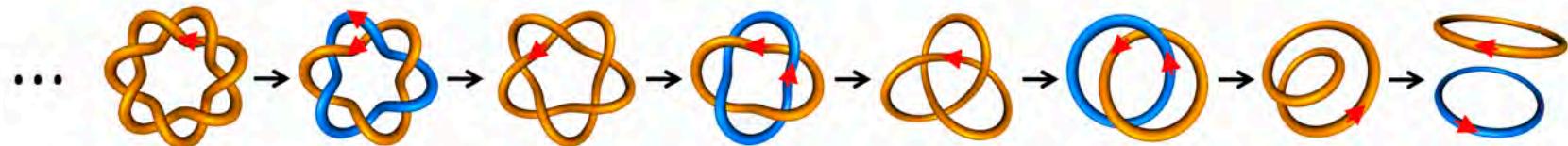
- **all torus knots $T(2,2n+1)$ and links $T(2,2n)$ are standardly embedded on a mathematical torus in closed braid form;**
- **all torus knots and links form an ordered set $\{T(2,n)\}$ of elements listed according to their decreasing value of topological complexity given by $c_{\min} = n$;**

Ideal torus knots & links cascade

Consider the cascade process:

(i)

(ii)



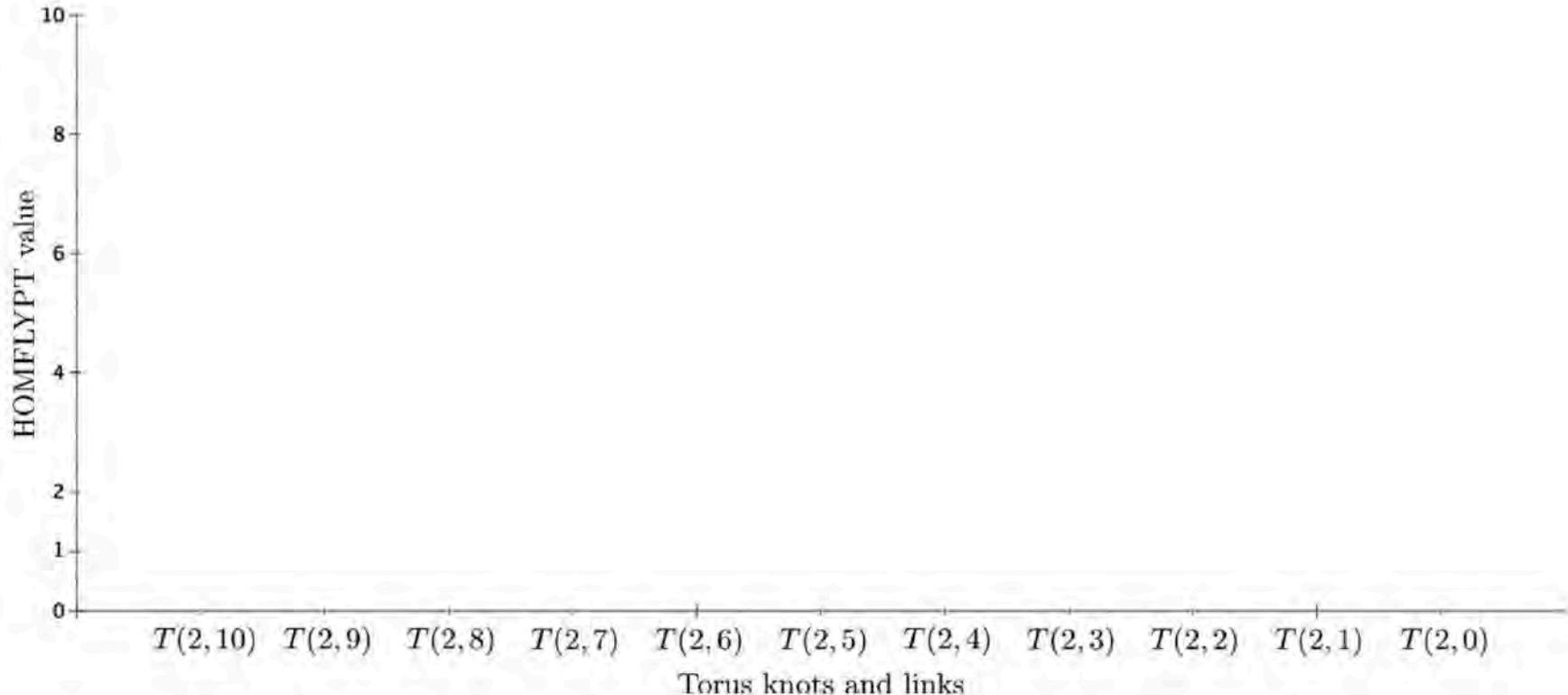
$T(2,7) \quad T(2,6) \quad T(2,5) \quad T(2,4) \quad T(2,3) \quad T(2,2) \quad T(2,1) \quad T(2,0)$

$\{T(2,n)\} : \dots \rightarrow T(2,2n+1) \rightarrow T(2,n) \rightarrow \dots \rightarrow T(2,0) .$

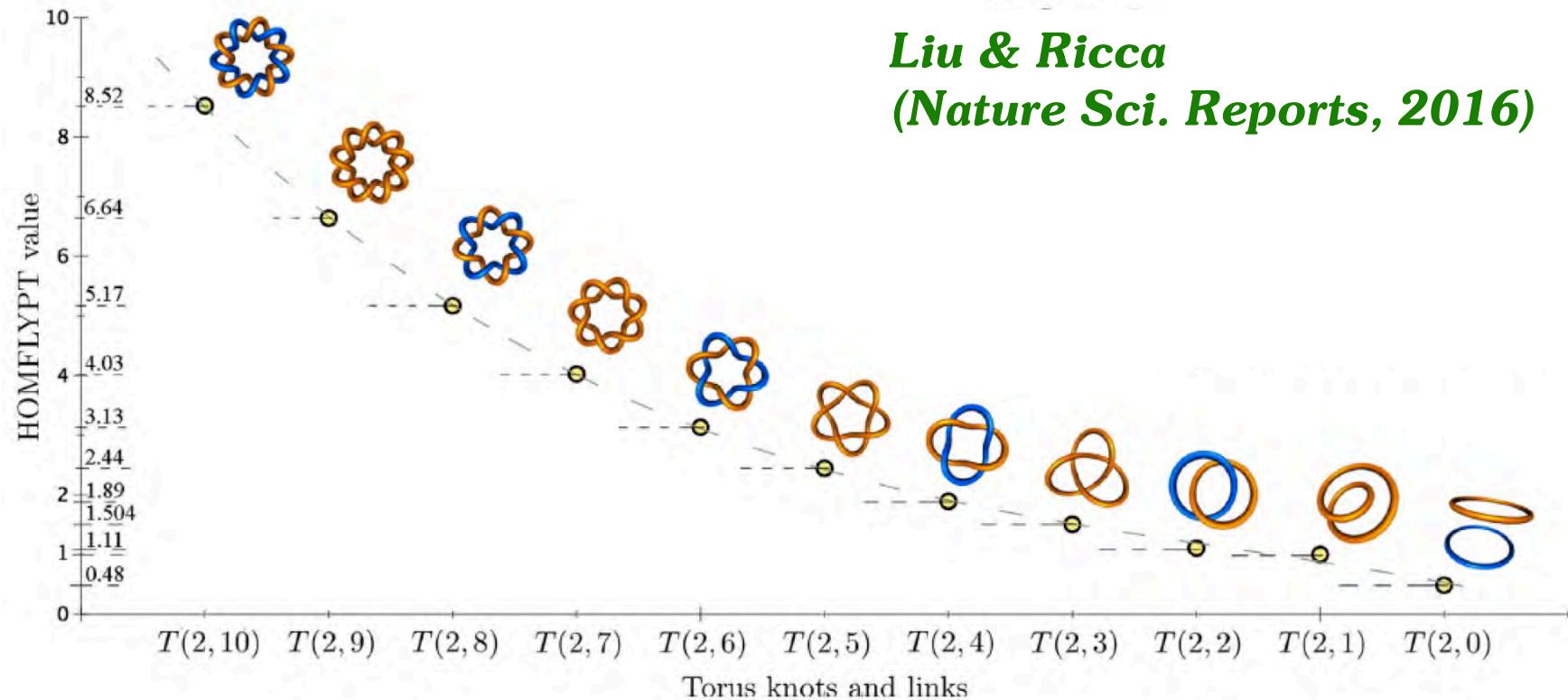
Assumptions:

- **all torus knots $T(2,2n+1)$ and links $T(2,2n)$ are standardly embedded on a mathematical torus in closed braid form;**
- **all torus knots and links form an ordered set $\{T(2,n)\}$ of elements listed according to their decreasing value of topological complexity given by $c_{\min} = n$;**
- **any topological transition between two contiguous elements of $\{T(2,n)\}$ is determined by a single, orientation-preserving reconnection event.**

HOMFLYPT is the best quantifier of topological complexity

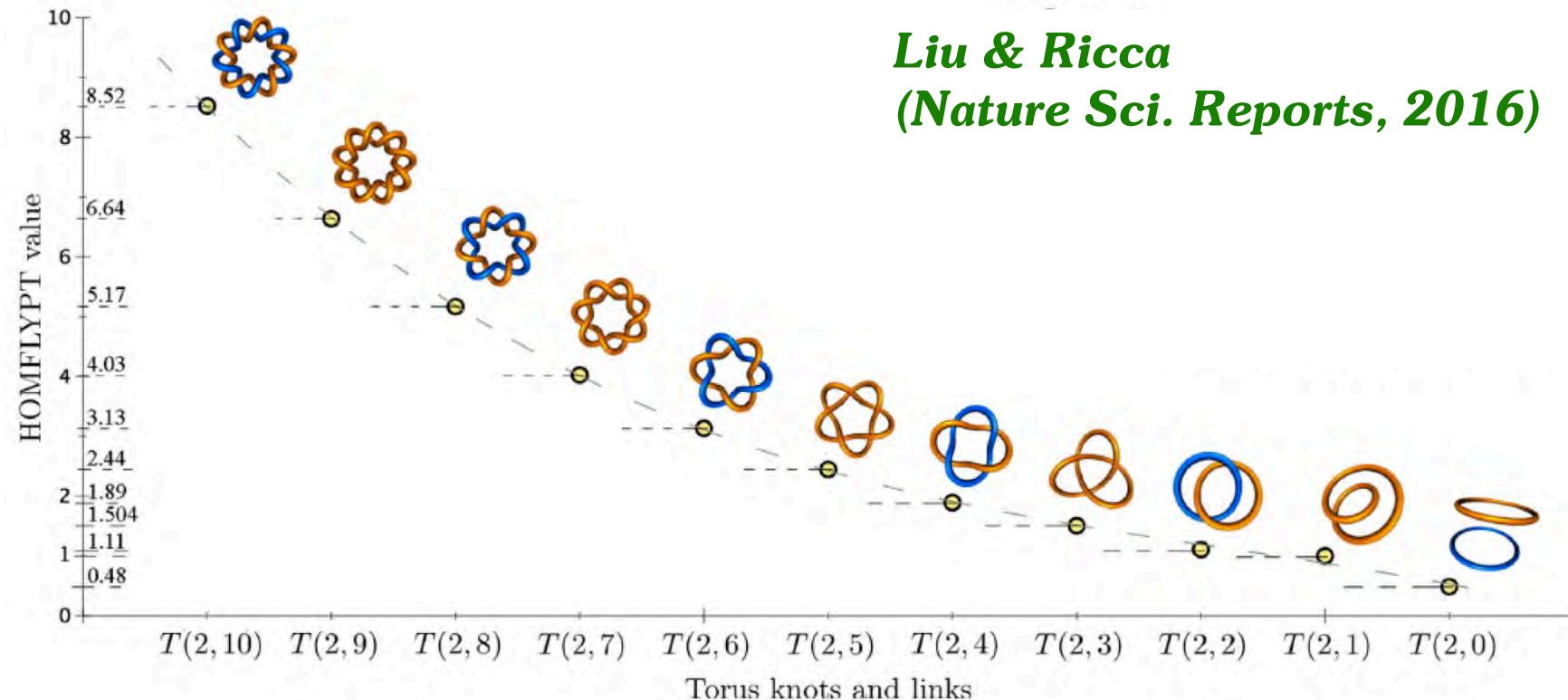


HOMFLYPT is the best quantifier of topological complexity

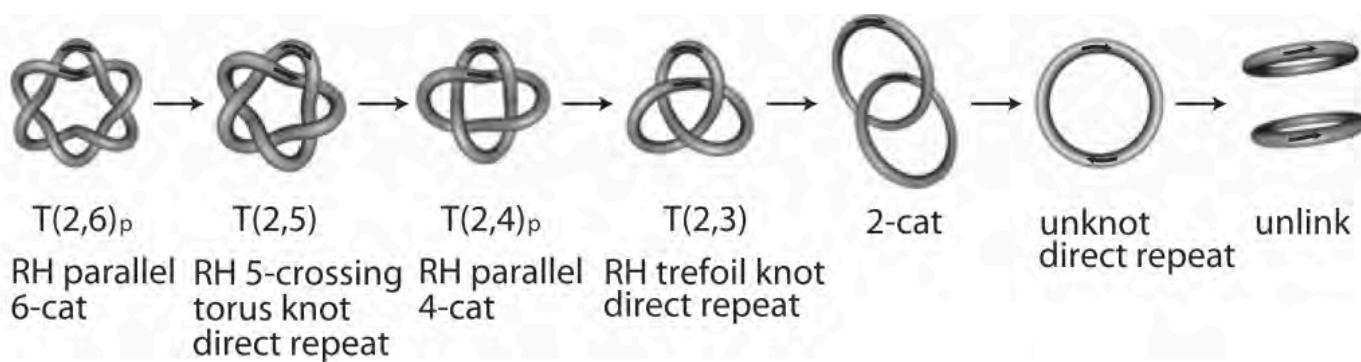


Liu & Ricca
(Nature Sci. Reports, 2016)

HOMFLYPT is the best quantifier of topological complexity

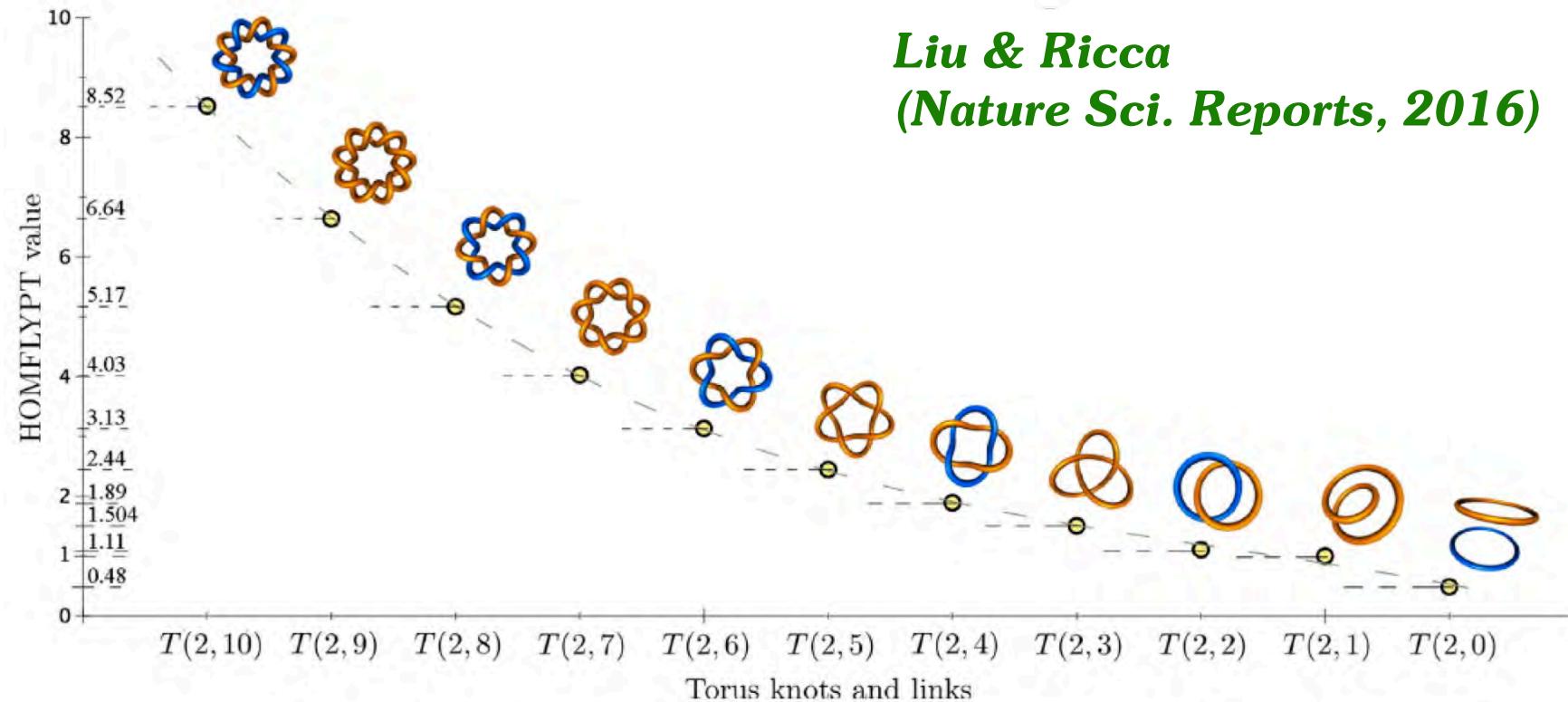


- *Similar cascade process in E-coli DNA replication:*

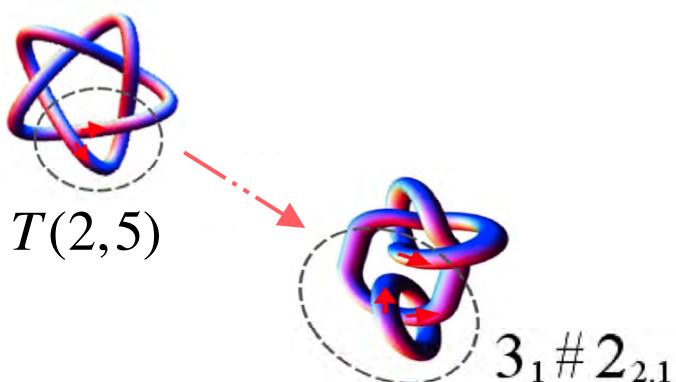


(Shimokawa et al., 2013)

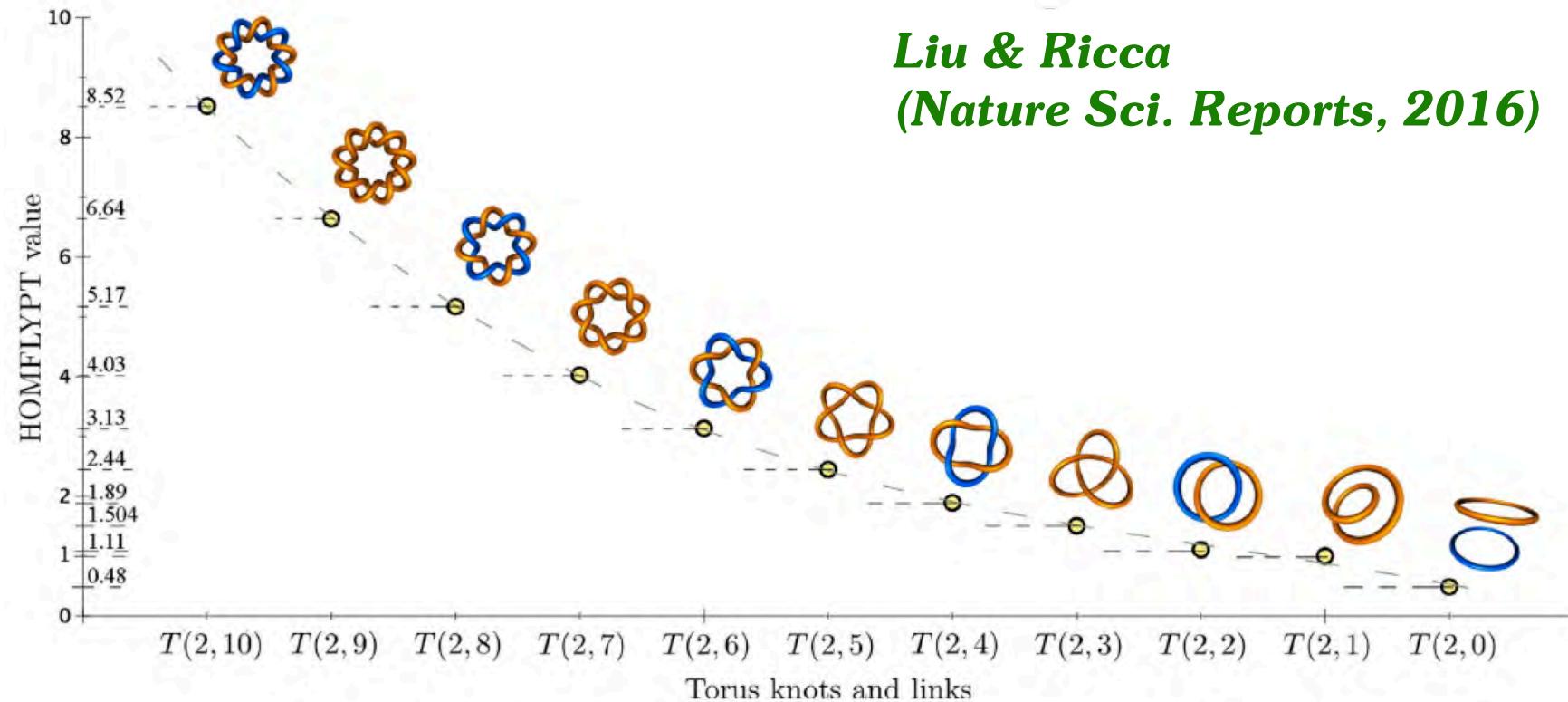
HOMFLYPT is the best quantifier of topological complexity



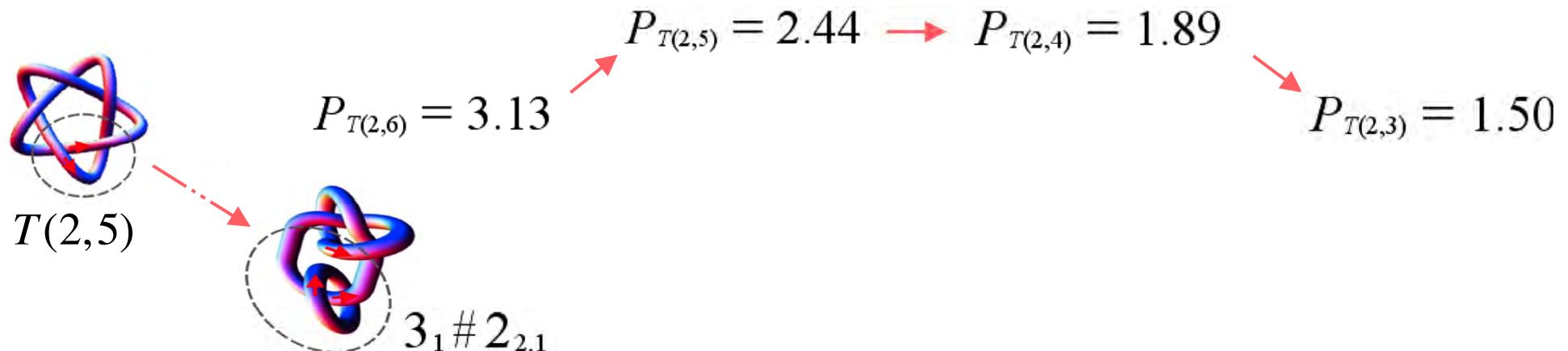
- *Optimal path to cascade?*



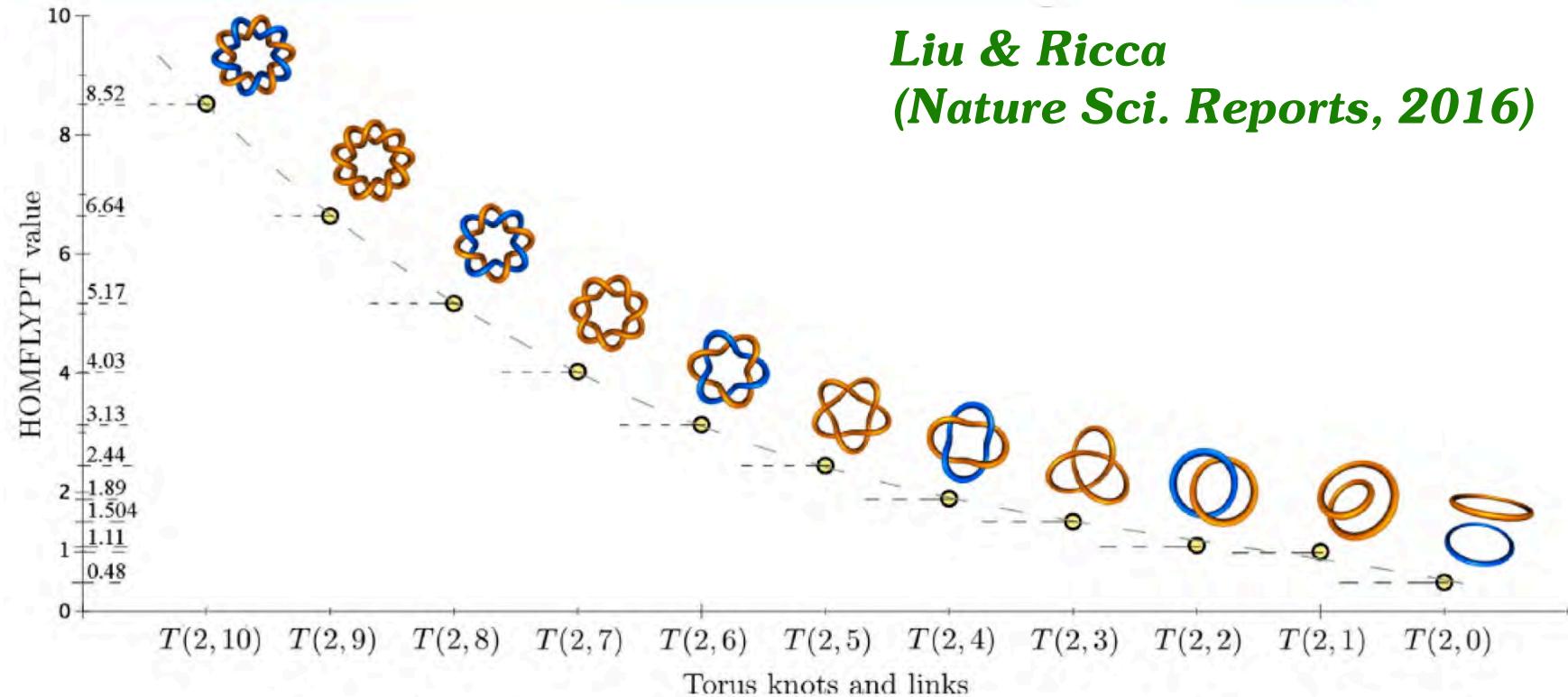
HOMFLYPT is the best quantifier of topological complexity



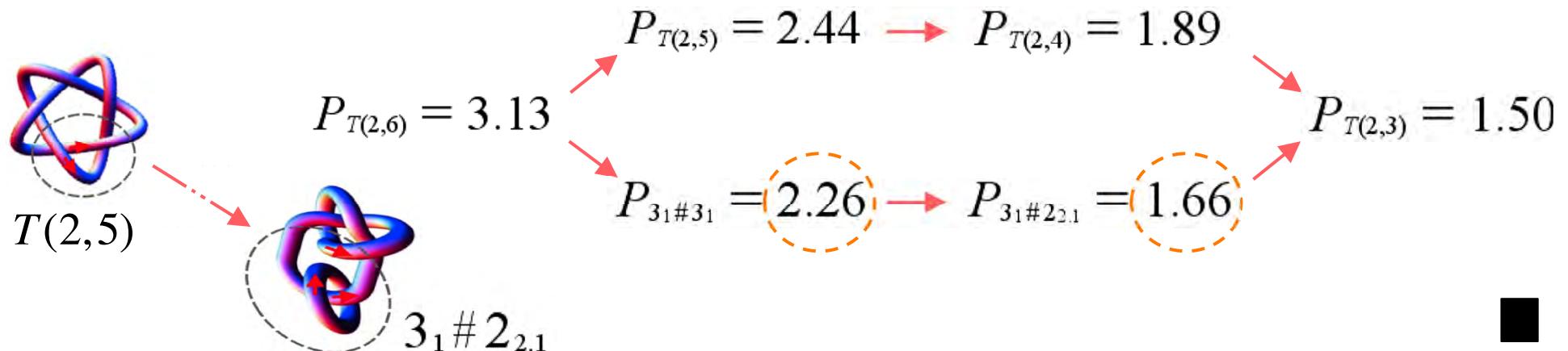
- ***Optimal path to cascade?***



HOMFLYPT is the best quantifier of topological complexity



- *Optimal path to cascade?*



End of Lecture 2

Laboratory

- **From Gauss coding to modern tabulation:**
 - *Alexander-Briggs notation*
 - *Braid words, Gauss and Dowker-Thistlethwaite code*
 - *Jones polynomial*
 - *Ropelength, tight knots and ideal shapes*
- **KnotAtlas (Bar Natan, 2000, 2004):**
 - *online database of knots and invariants*
- **LinKnot (Jablan-Razdanovic, 2006):**
 - *online knot theory software*
- **KnotPlot (Scharein, 2011):**
 - *visualization and mathematical exploration software*
 - *tangle calculator*
 - *dynamical systems interface*
 - *mathematical experimentation*

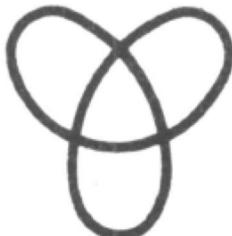
Topological crossing number and knot types

c_{\min}	# of knot types
0	1
1	0
2	0
3	1
4	1
5	2
6	3
7	7
8	21
9	49
10	165
11	552
12	2176
13	9988
14	46,972
15	253,293
16	1,388,705

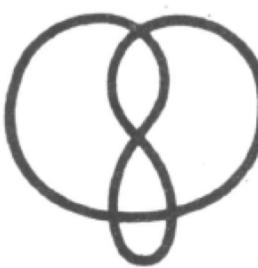
The standard table of knots (Reidemeister, Knotentheorie, 1932)

Knotentabelle.

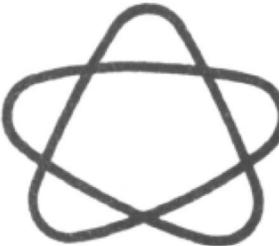
Die Tabelle der folgenden Knotenprojektionen bis zu neun Überkreuzungen wurde der Arbeit von ALEXANDER und BRIGGS (5) entnommen. Verbessert wurden die Kurven 8_4 und 9_7 , bei denen die Anzahl der Überkreuzungen nicht stimmte.



3_1



4_1



5_1

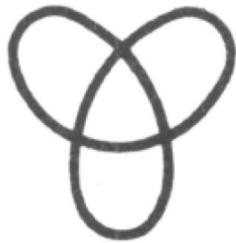


5_2

The standard table of knots (Reidemeister, Knotentheorie, 1932)

Knotentabelle.

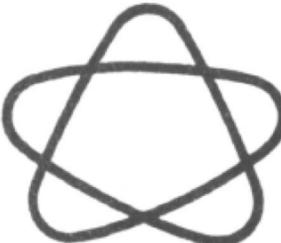
Die Tabelle der folgenden Knotenprojektionen bis zu neun Überkreuzungen wurde der Arbeit von ALEXANDER und BRIGGS (5) entnommen. Verbessert wurden die Kurven 8_4 und 9_7 , bei denen die Anzahl der Überkreuzungen nicht stimmte.



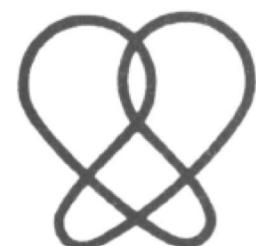
3_1



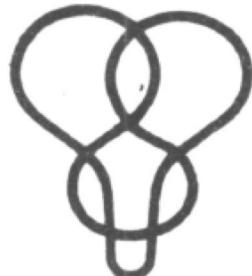
4_1



5_1



5_2



6_1



6_2

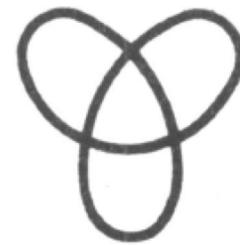


6_3

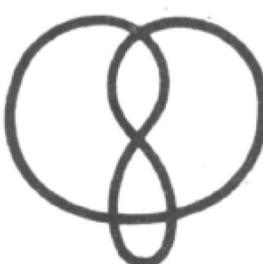
The standard table of knots (Reidemeister, Knotentheorie, 1932)

Knotentabelle.

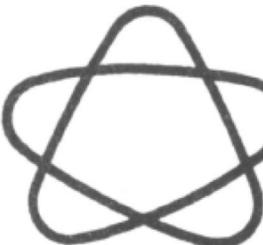
Die Tabelle der folgenden Knotenprojektionen bis zu neun Überkreuzungen wurde der Arbeit von ALEXANDER und BRIGGS (5) entnommen. Verbessert wurden die Kurven 8_4 und 9_7 , bei denen die Anzahl der Überkreuzungen nicht stimmte.



3_1



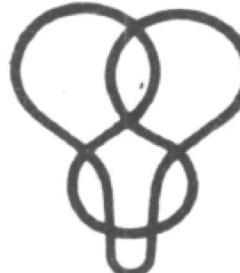
4_1



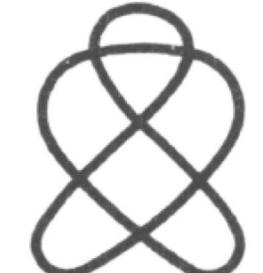
5_1



5_2



6_1



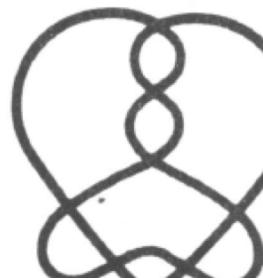
6_2



6_3

7_1

7_2



7_3

7_4

7_5

... ...

Alexander-Briggs notation (knot/link type)

Braid words

Hopf link:

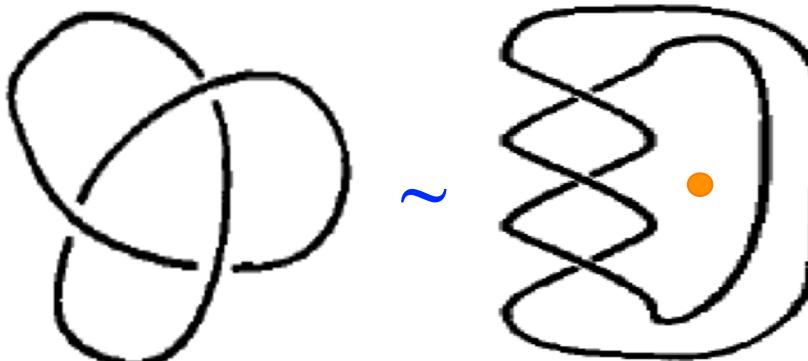
Trefoil knot:

F^8 knot:

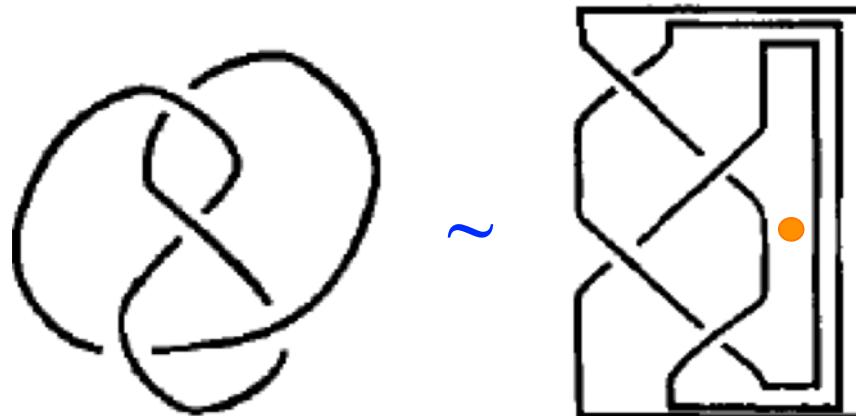
Braid words

Hopf link:

Trefoil knot:

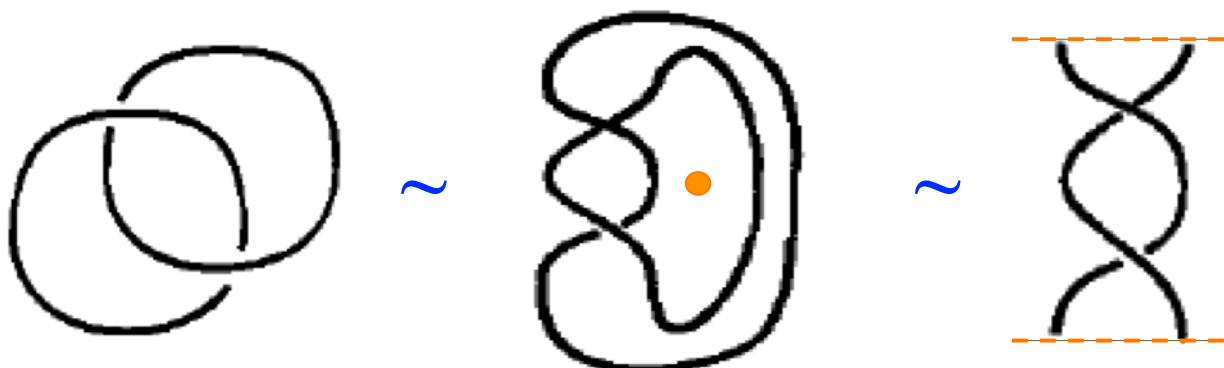


F^8 knot:

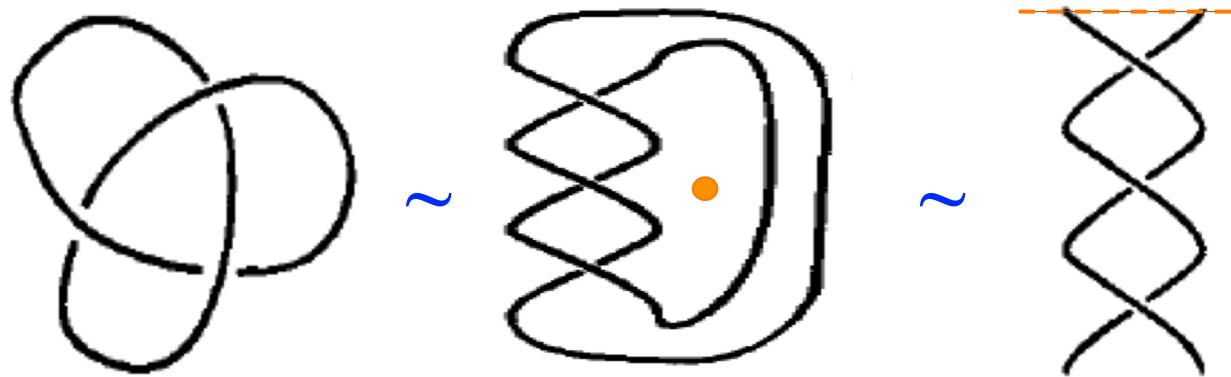


Braid words

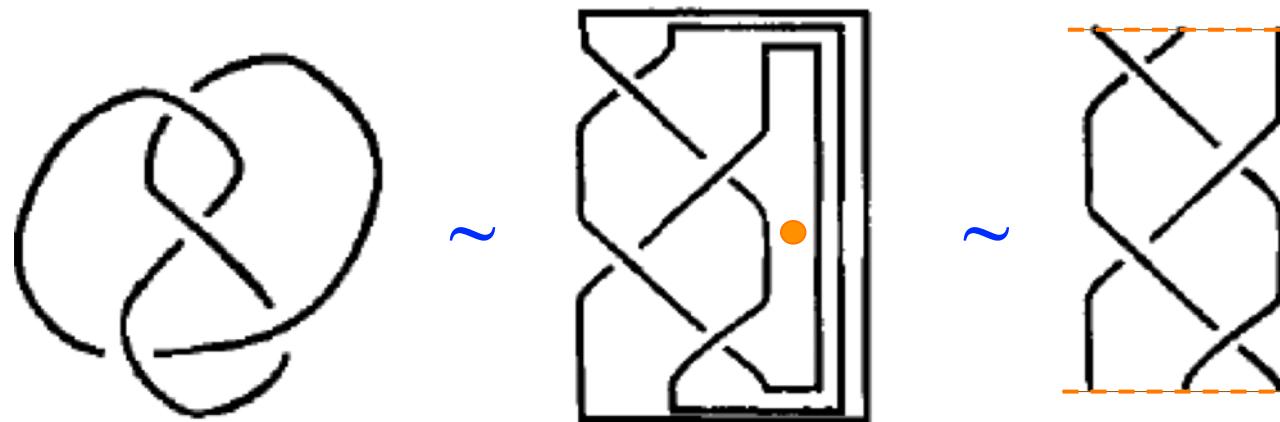
Hopf link:



Trefoil knot:

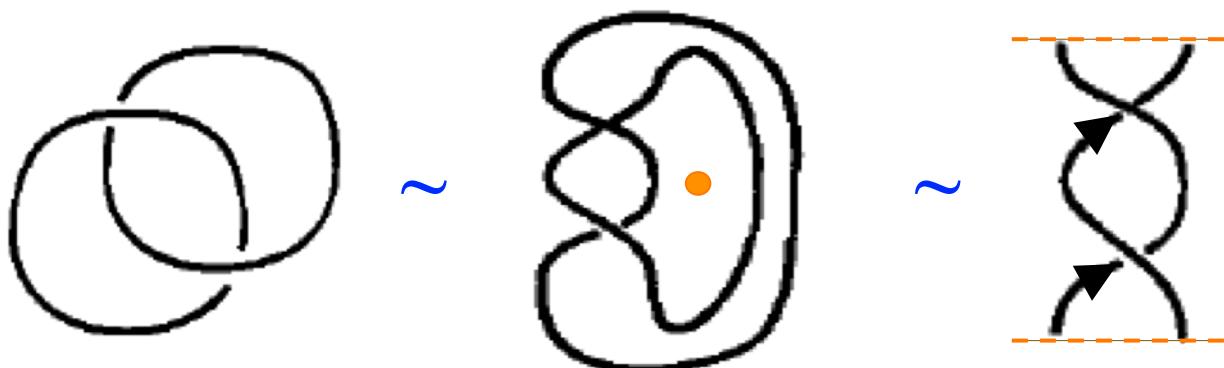


F^8 knot:

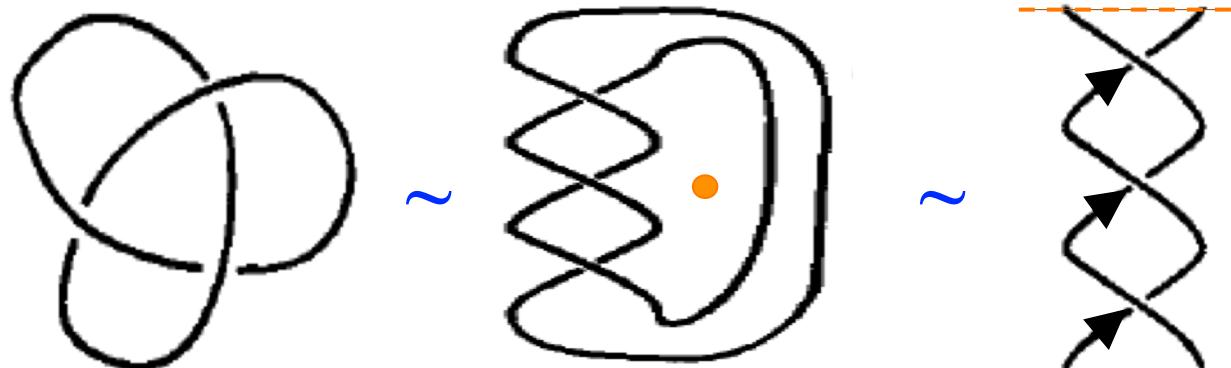


Braid words

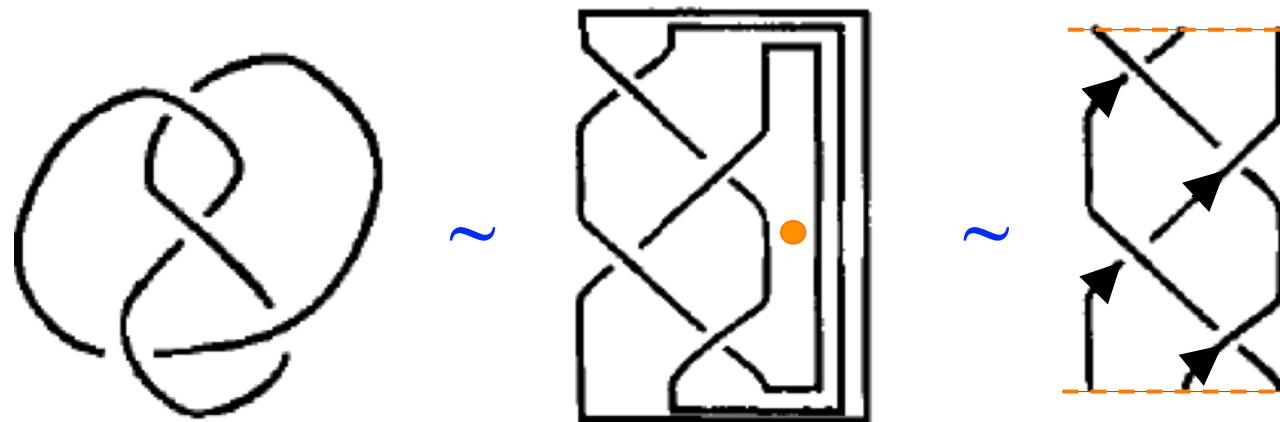
Hopf link:



Trefoil knot:



F^8 knot:



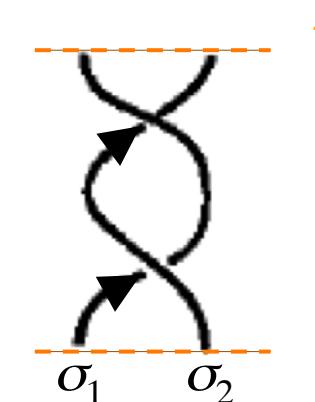
Braid words

Hopf link:

\sim



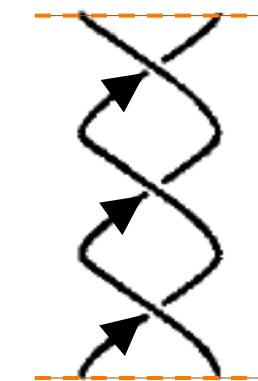
\sim



Trefoil knot:

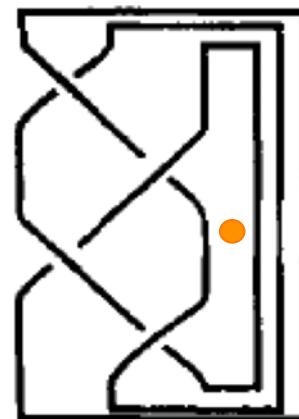
\sim

\sim

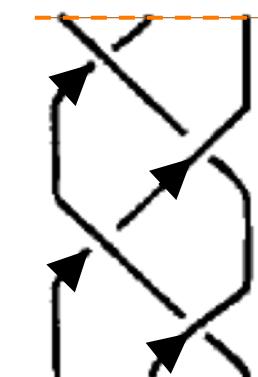


F^8 knot:

\sim



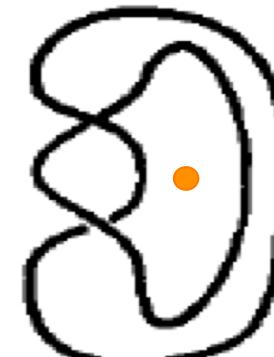
\sim



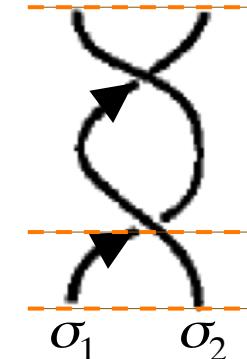
Braid words

Hopf link:

\sim



\sim

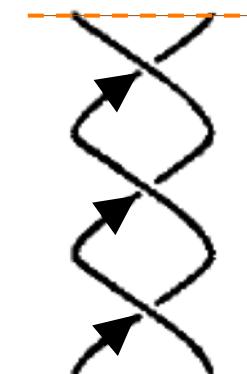


braid word
 σ_1^{-1}

Trefoil knot:

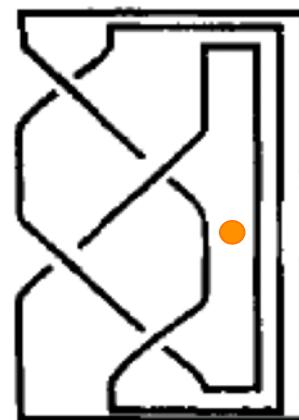
\sim

\sim

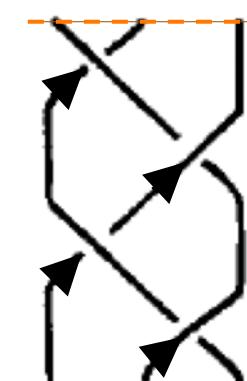


F^8 knot:

\sim



\sim

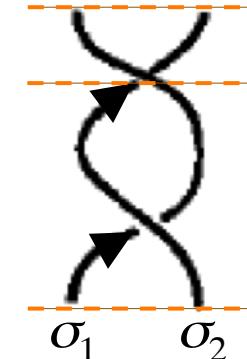


Braid words

Hopf link:

\sim

\sim

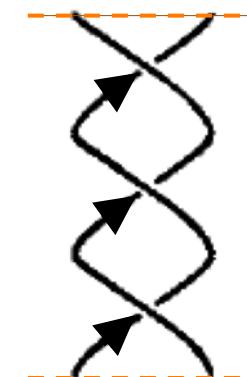


braid word
 $\sigma_1^{-1} \sigma_1^{-1}$

Trefoil knot:

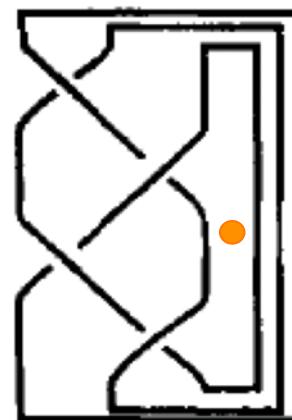
\sim

\sim

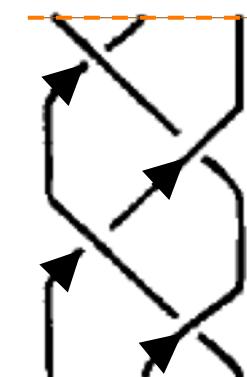


F^8 knot:

\sim



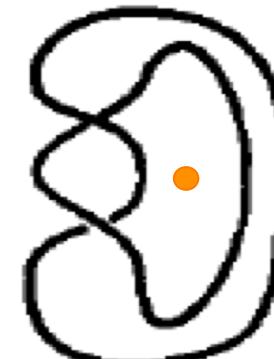
\sim



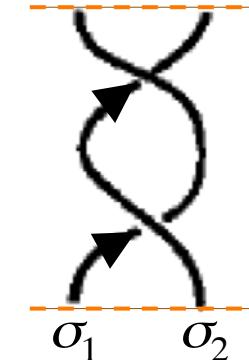
Braid words

Hopf link:

\sim



\sim

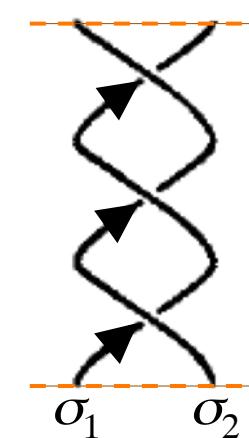


braid word
 $\sigma_1^{-1} \sigma_1^{-1}$

Trefoil knot:

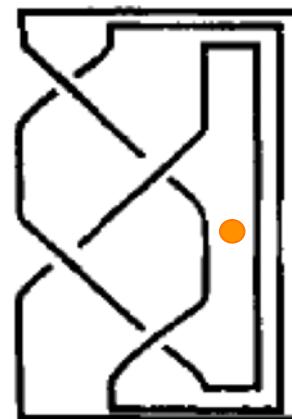
\sim

\sim

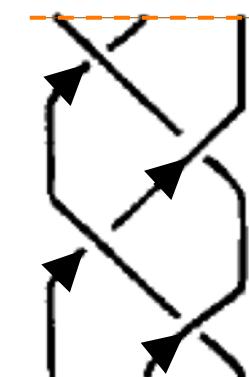


F^8 knot:

\sim



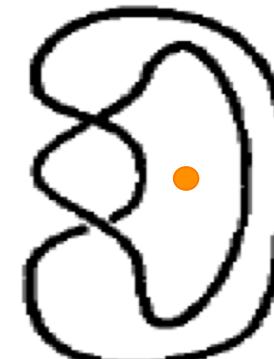
\sim



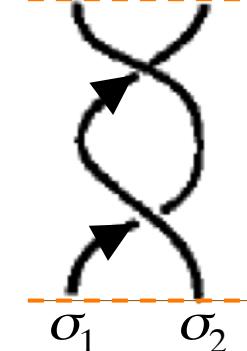
Braid words

Hopf link:

\sim



\sim



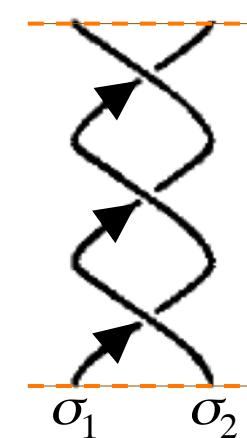
braid
word

$\sigma_1^{-1} \sigma_1^{-1}$

Trefoil knot:

\sim

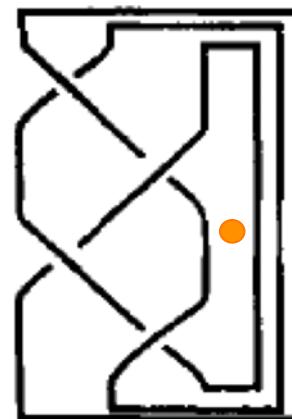
\sim



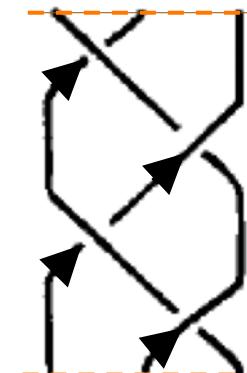
$\sigma_1^{-1} \sigma_1^{-1} \sigma_1^{-1}$

F⁸ knot:

\sim



\sim

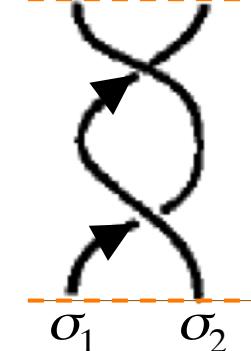


Braid words

Hopf link:

\sim

\sim



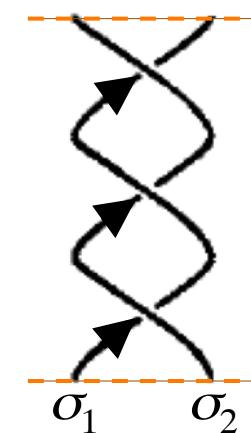
braid word

$\sigma_1^{-1} \sigma_1^{-1}$

Trefoil knot:

\sim

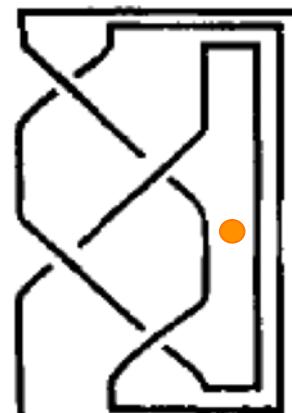
\sim



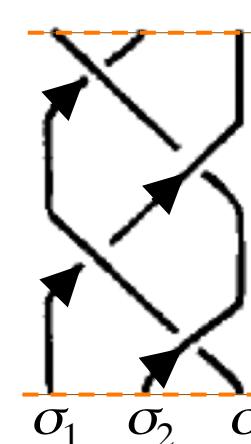
$\sigma_1^{-1} \sigma_1^{-1} \sigma_1^{-1}$

F^8 knot:

\sim



\sim



braid word

$\sigma_1^{-1} \sigma_1^{-1} \sigma_1^{-1} \sigma_1^{-1}$

Braid words

Hopf link:

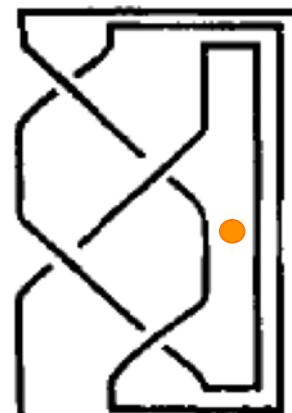
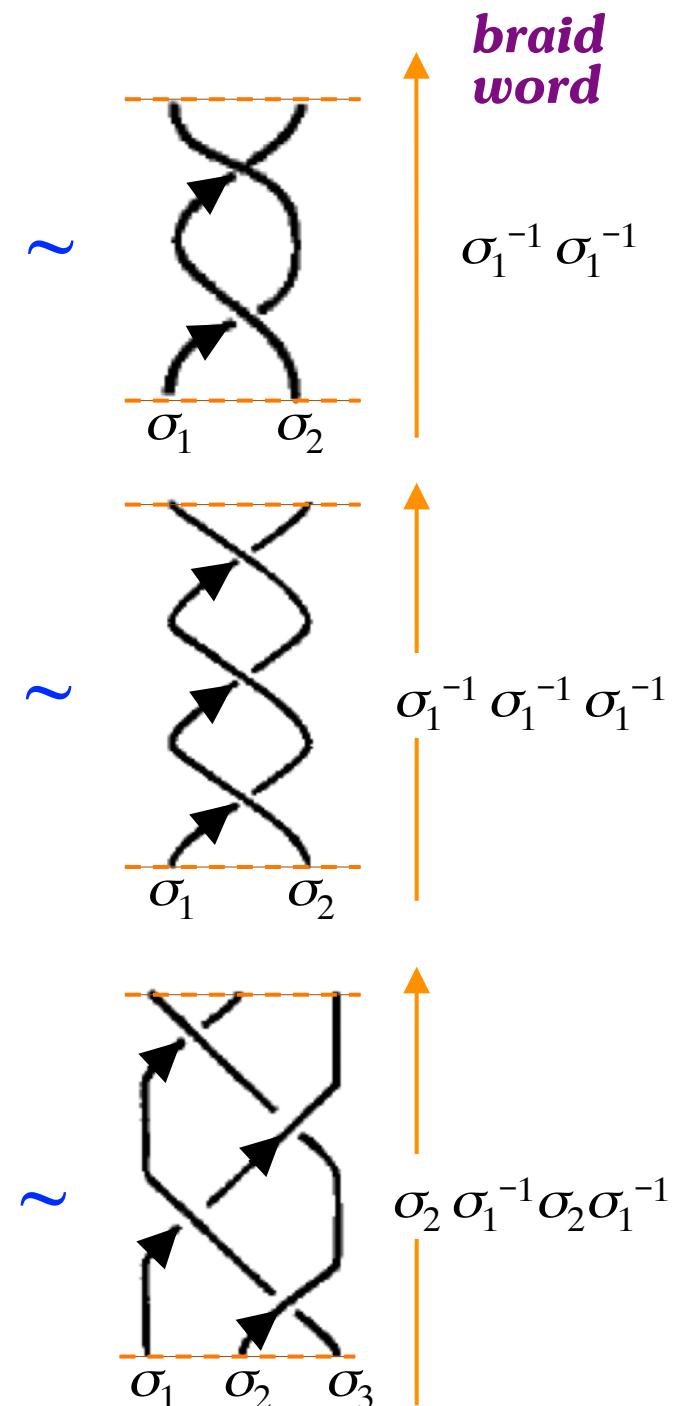
\sim

Trefoil knot:

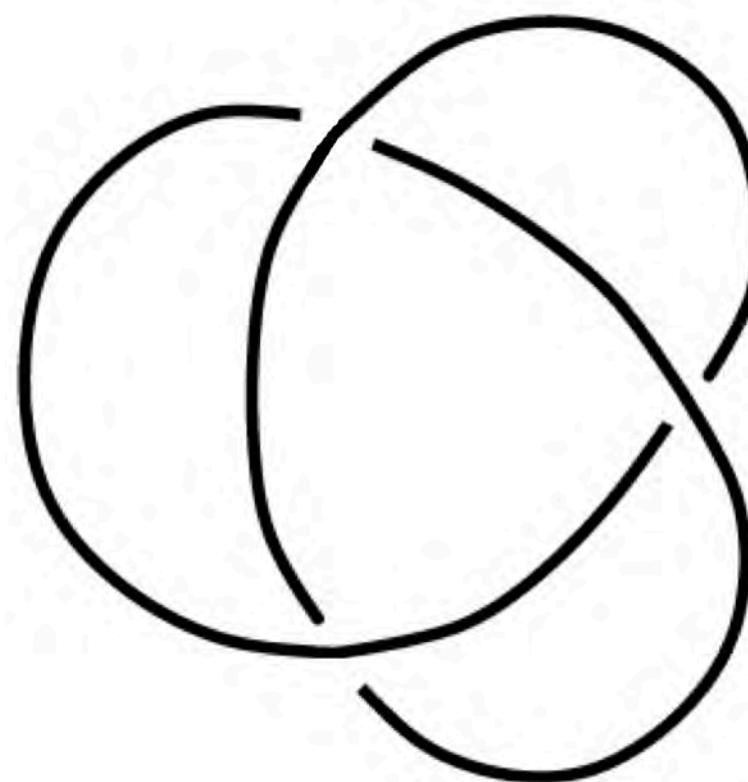
\sim

F^8 knot:

\sim

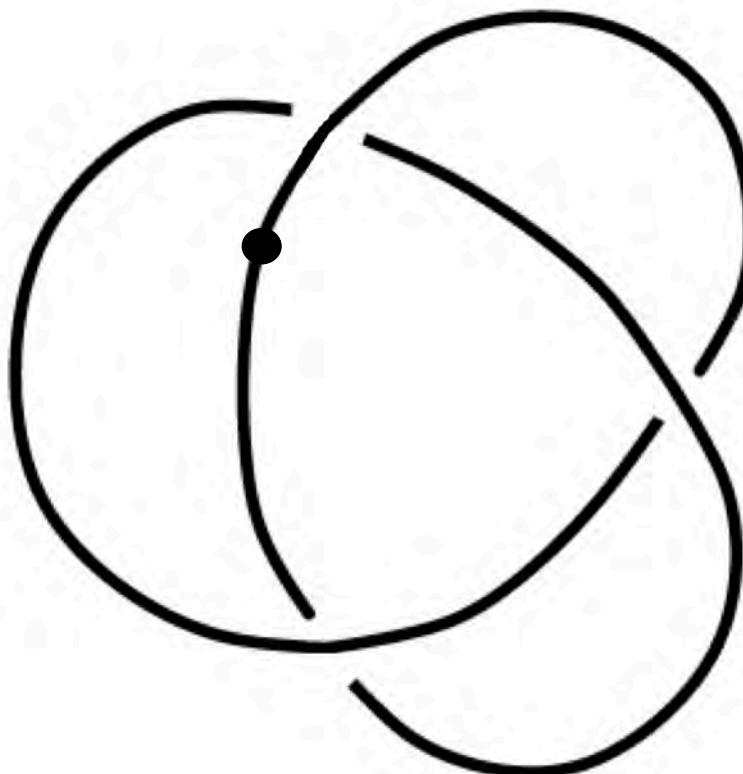


Gauss code: an example



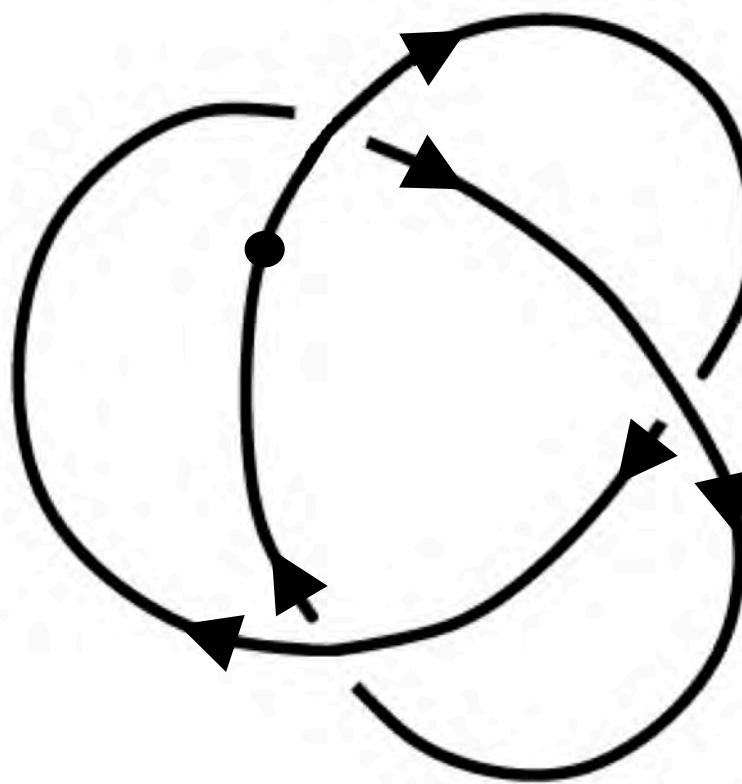
Gauss code: an example

- **Rule:**
 - i) *fix an origin on the knot,
(not on a crossing site);*



Gauss code: an example

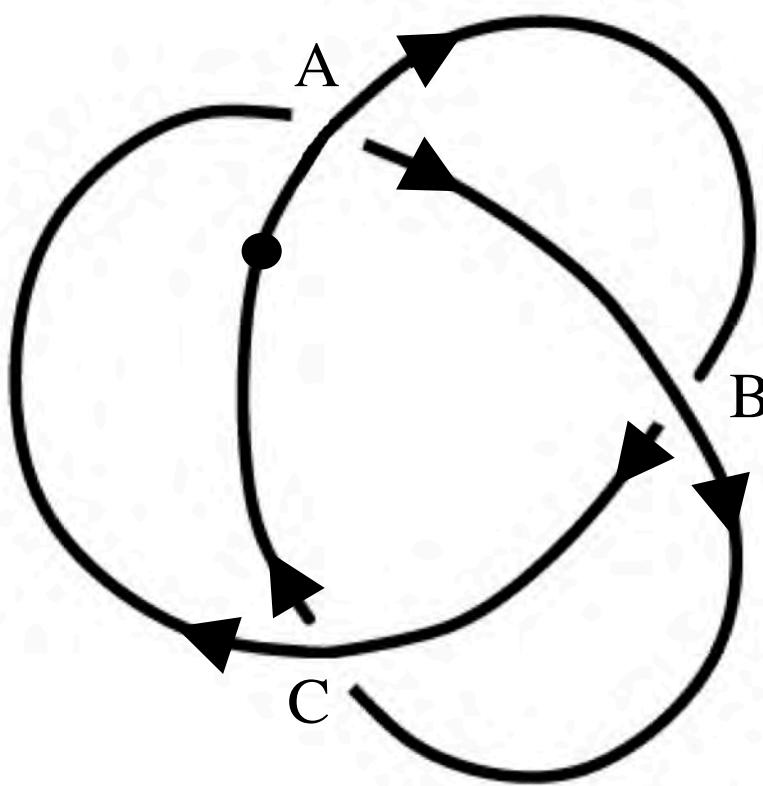
- **Rule:**
 - fix an origin on the knot,
(not on a crossing site);*
 - orient the knot;*



Gauss code: an example

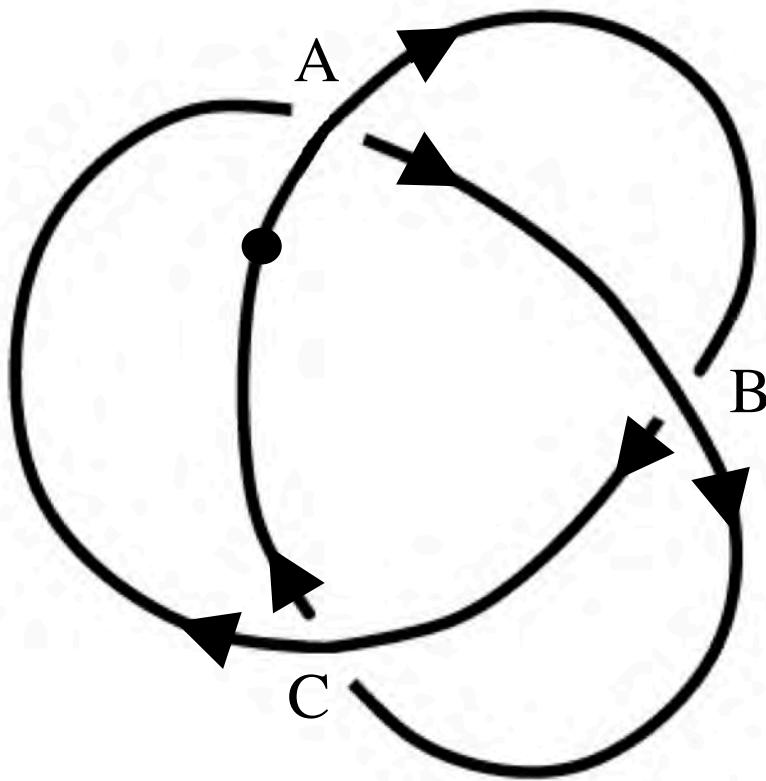
- **Rule:**

- fix an origin on the knot,
(not on a crossing site);*
- orient the knot;*
- assign a letter (or a number) to each crossing site
in alphabetical order according to orientation;*



Gauss code: an example

$A, -B, C, -A, B, -C.$



- **Rule:**

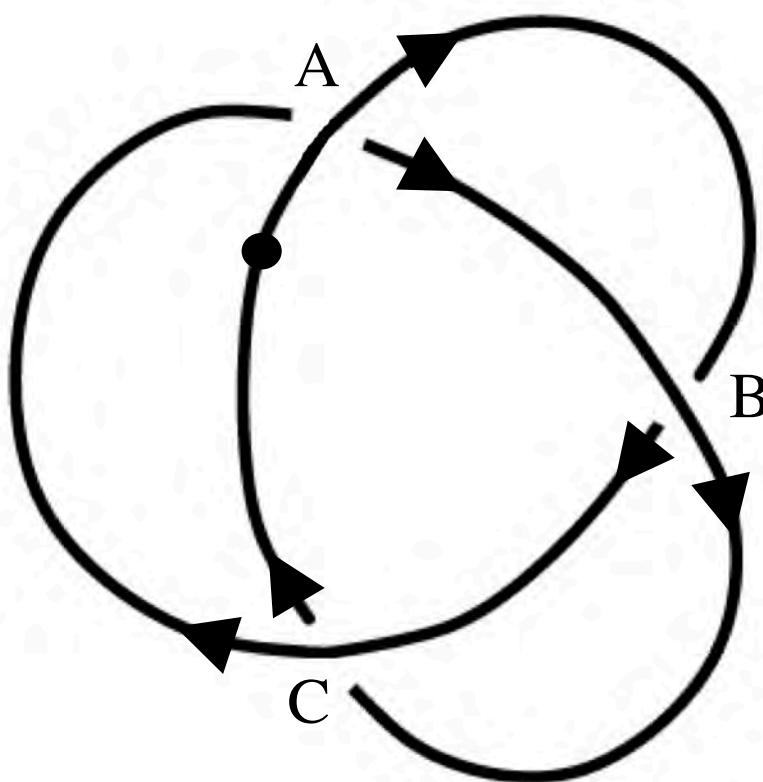
- fix an origin on the knot,
(not on a crossing site);*
- orient the knot;*
- assign a letter (or a number) to each crossing site
in alphabetical order according to orientation;*
- list all the signed letters in sequence all the way around the knot,
positive for an overpass, negative for an underpass;*

Gauss code: an example

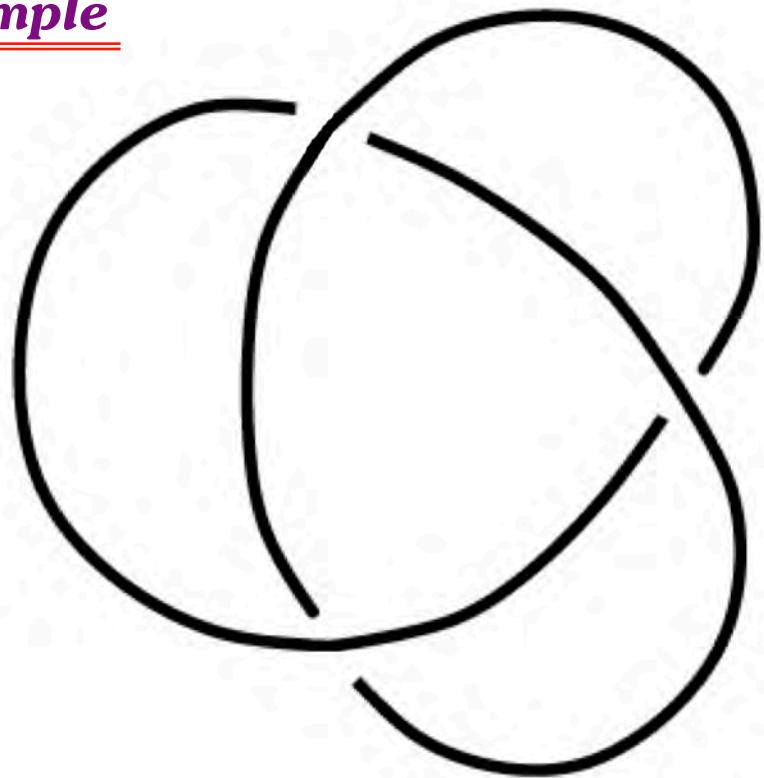
Gauss code: $\{A -B\ C -A\ B -C\}$

- **Rule:**

- fix an origin on the knot,
(not on a crossing site);*
- orient the knot;*
- assign a letter (or a number) to each crossing site
in alphabetical order according to orientation;*
- list all the signed letters in sequence all the way around the knot,
positive for an overpass, negative for an underpass;*
- the set of ordered sequence is the Gauss code.*

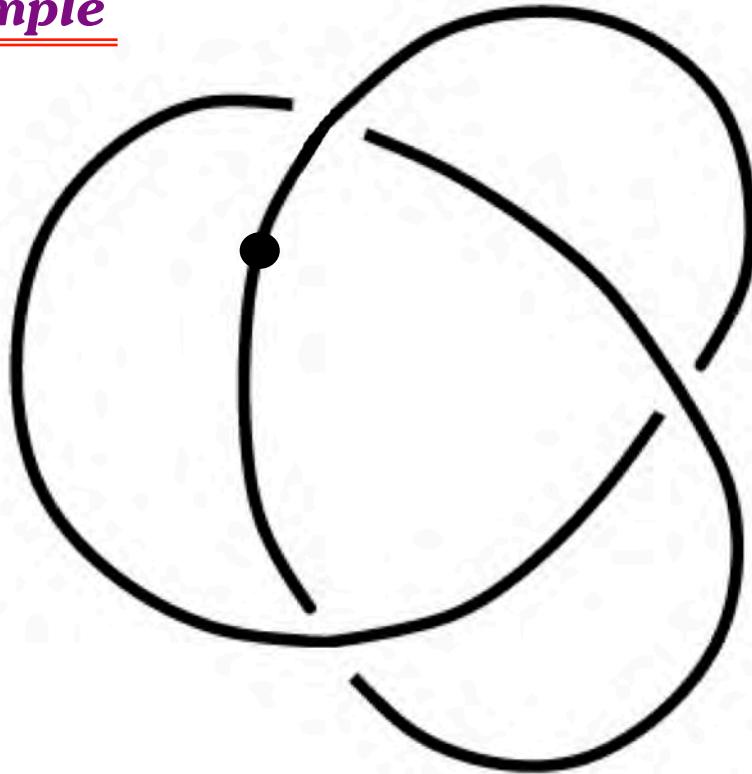


DT (Dowker-Thistlethwaite) code: an example



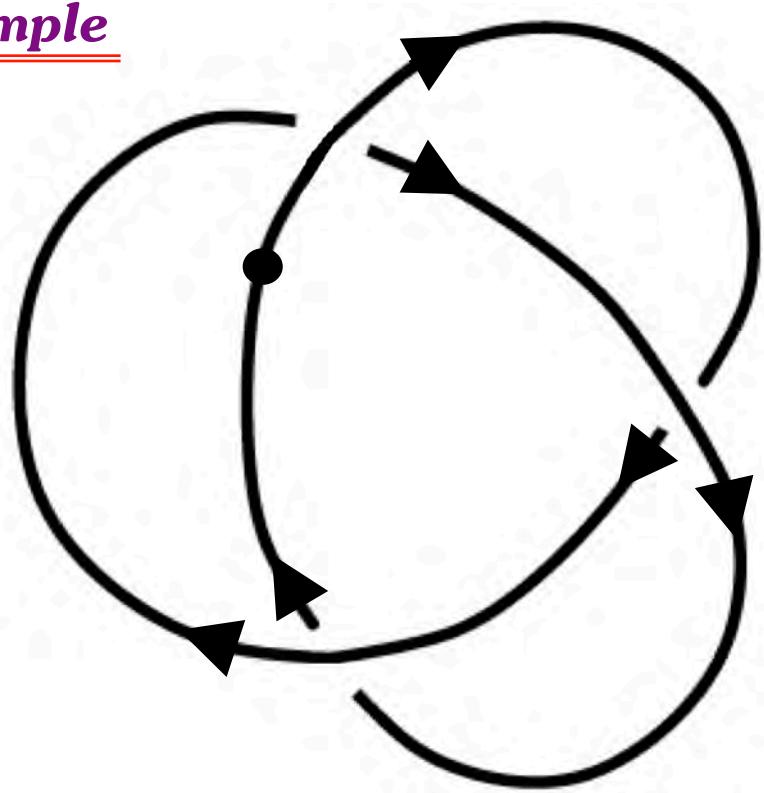
DT (Dowker-Thistlethwaite) code: an example

- *Rule:*
 - fix an origin on the knot,
(not on a crossing site);*



DT (Dowker-Thistlethwaite) code: an example

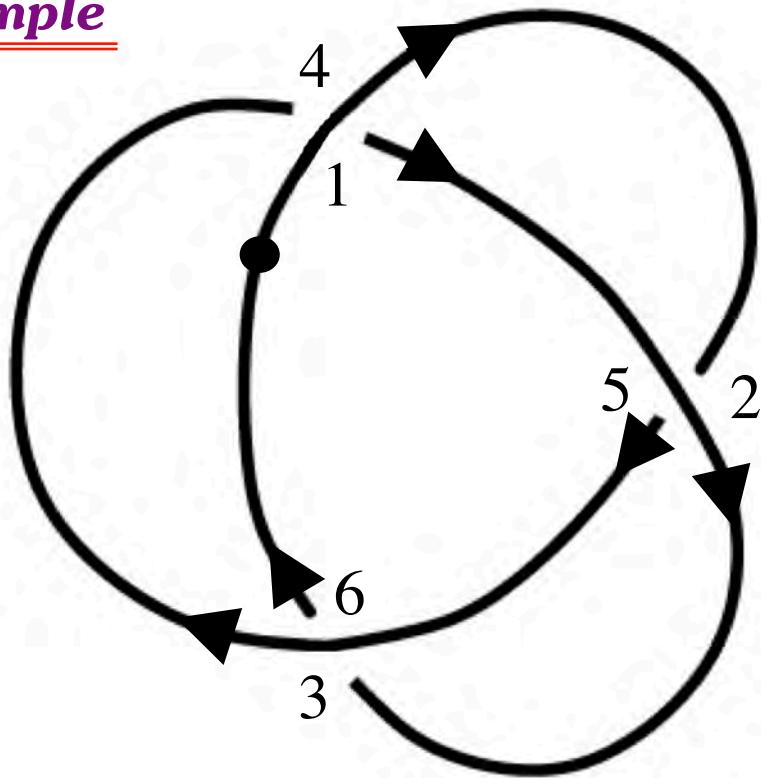
- **Rule:**
 - fix an origin on the knot, (not on a crossing site);***
 - orient the knot;***



DT (Dowker-Thistlethwaite) code: an example

- **Rule:**

- fix an origin on the knot,
(not on a crossing site);*
- orient the knot;*
- assign a number to each crossing site
in increasing order according to orientation, all around the knot;*

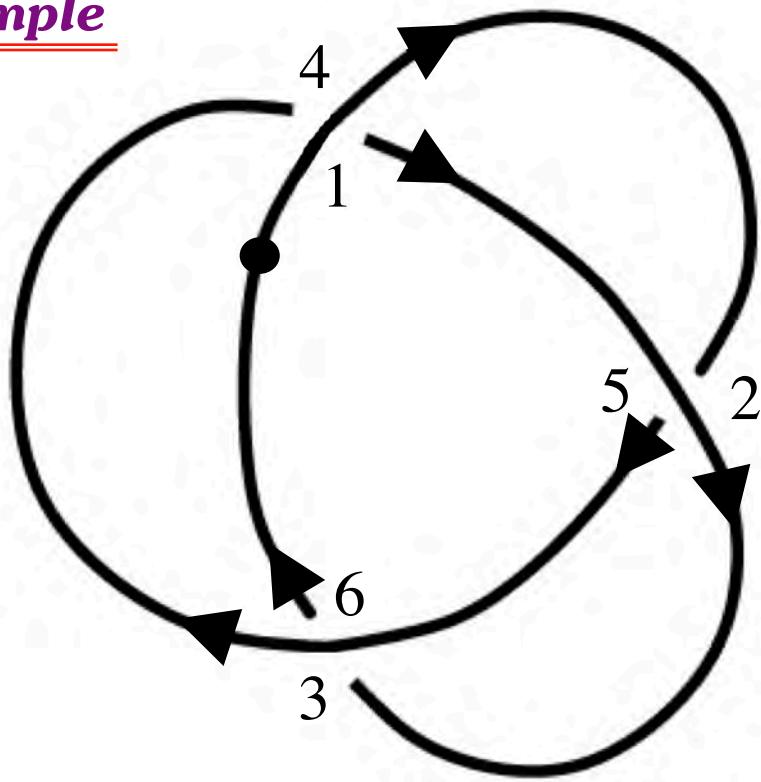


DT (Dowker-Thistlethwaite) code: an example

$\{ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \}$

- ***Rule:***

- fix an origin on the knot, (not on a crossing site);***
- orient the knot;***
- assign a number to each crossing site in increasing order according to orientation, all around the knot;***
- list the sequence of numbers by assigning a negative sign to even overpasses;***

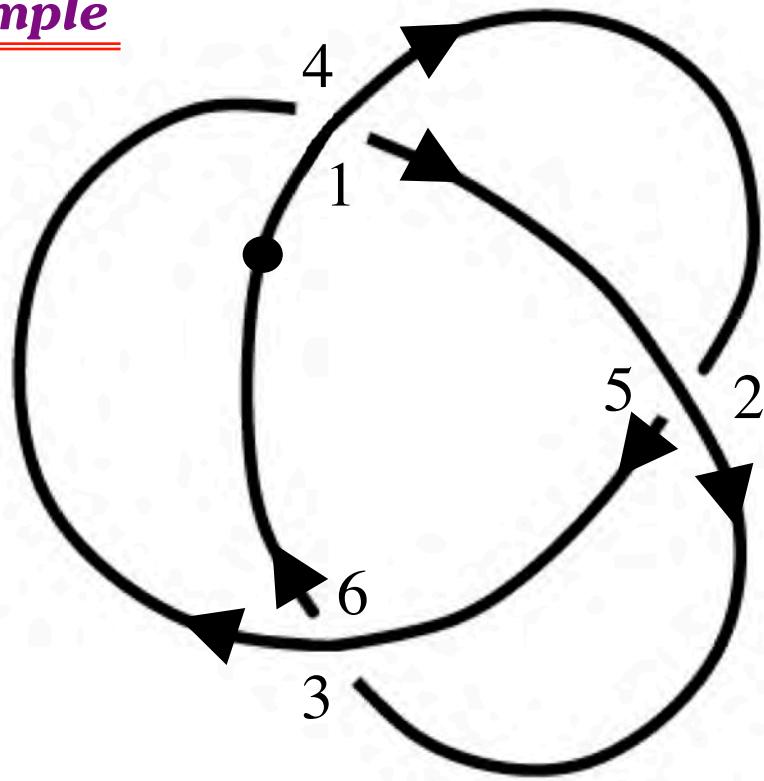


DT (Dowker-Thistlethwaite) code: an example

$$\{ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \} \rightarrow \left\{ \begin{matrix} 1 & 3 & 5 \\ 4 & 6 & 2 \end{matrix} \right\}$$

- ***Rule:***

- fix an origin on the knot, (not on a crossing site);***
- orient the knot;***
- assign a number to each crossing site in increasing order according to orientation, all around the knot;***
- list the sequence of numbers by assigning a negative sign to even overpasses;***
- starting from the odd numbers group odd and even numbers assigned to each crossing in separate ordered sequences, by placing the odd sequence above the even sequence;***



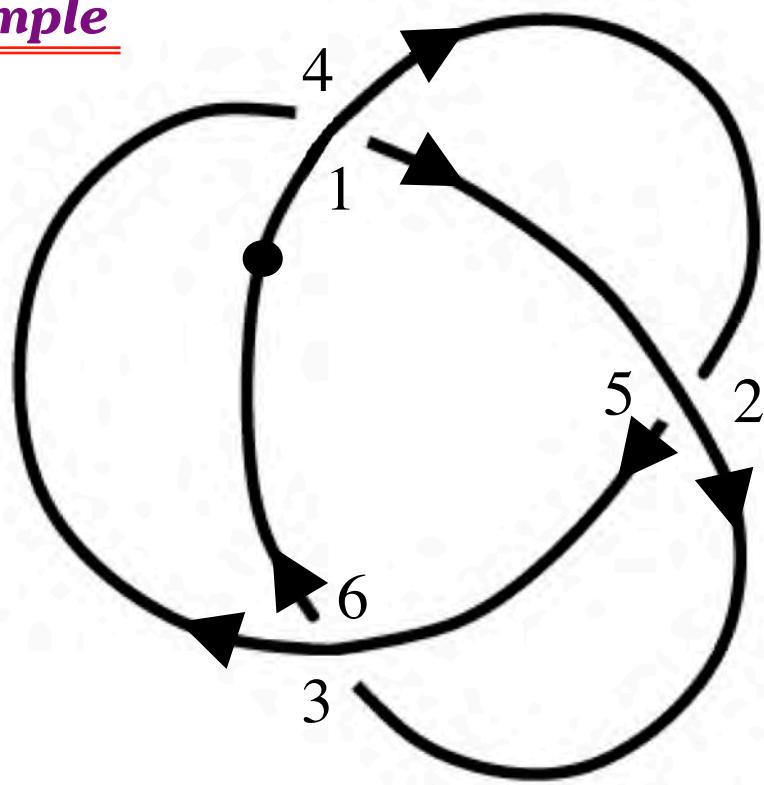
DT (Dowker-Thistlethwaite) code: an example

$$\{ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \} \rightarrow \left\{ \begin{matrix} 1 & 3 & 5 \\ 4 & 6 & 2 \end{matrix} \right\}$$

DT code: [4 6 2]

- ***Rule:***

- fix an origin on the knot, (not on a crossing site);***
- orient the knot;***
- assign a number to each crossing site in increasing order according to orientation, all around the knot;***
- list the sequence of numbers by assigning a negative sign to even overpasses;***
- starting from the odd numbers group odd and even numbers assigned to each crossing in separate ordered sequences, by placing the odd sequence above the even sequence;***
- the set of even sequence represents the DT code.***



DT (Dowker-Thistlethwaite) code: a worked-out example

- ***Remark: mirror knots have same DT code***

DT (Dowker-Thistlethwaite) code: a worked-out example

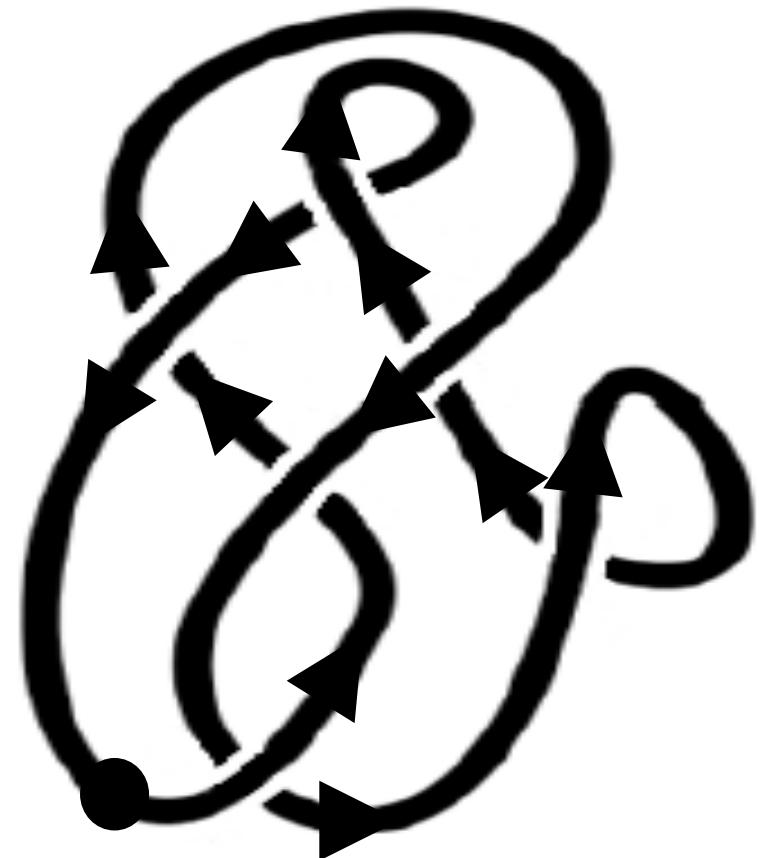
- *Remark: mirror knots have same DT code*

DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*

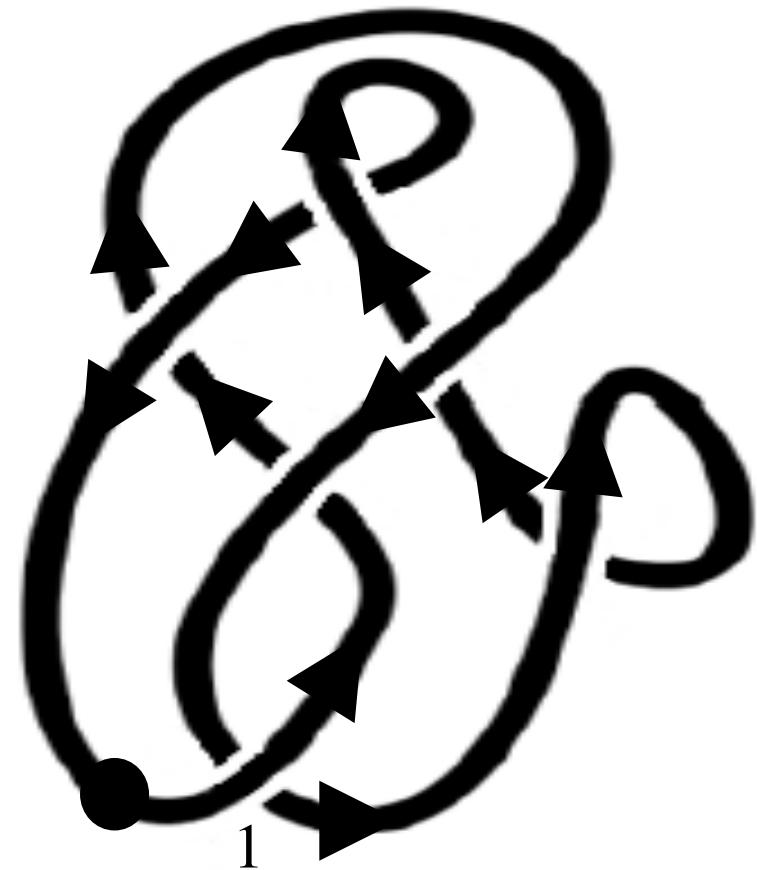
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



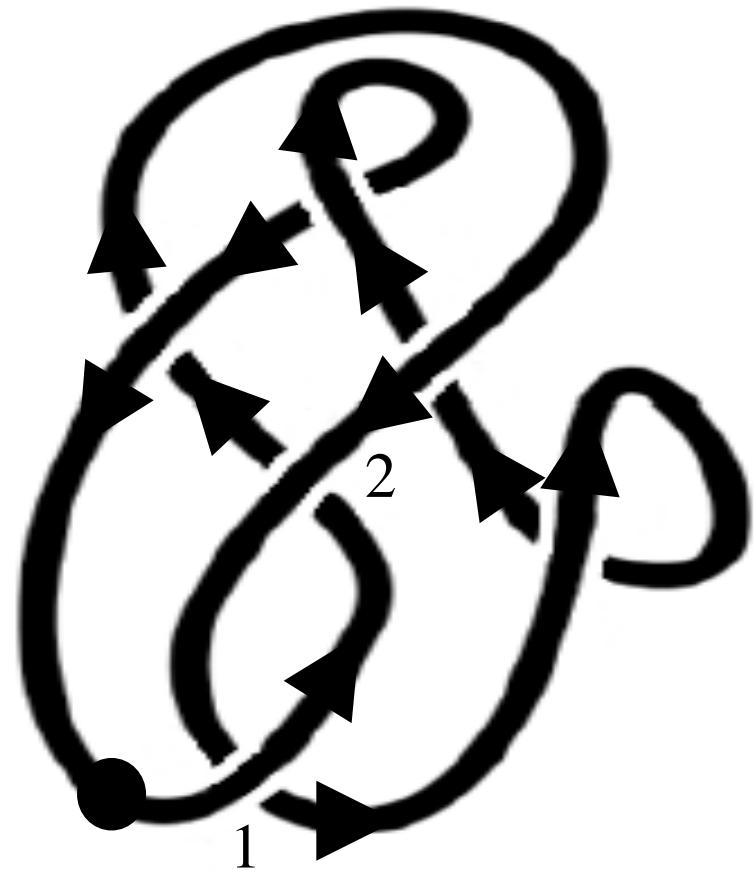
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



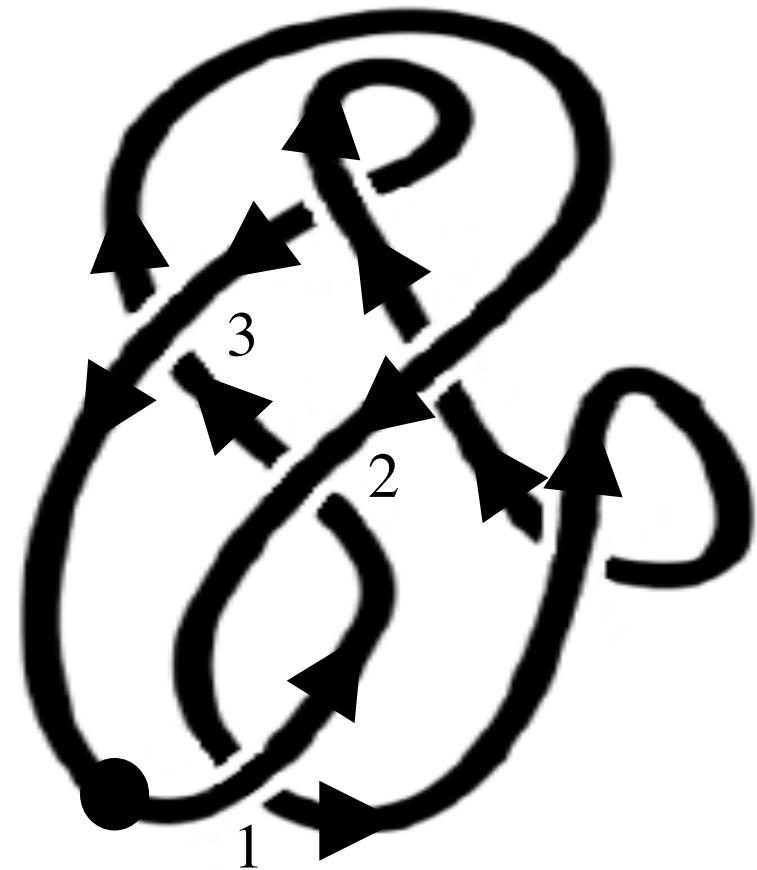
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



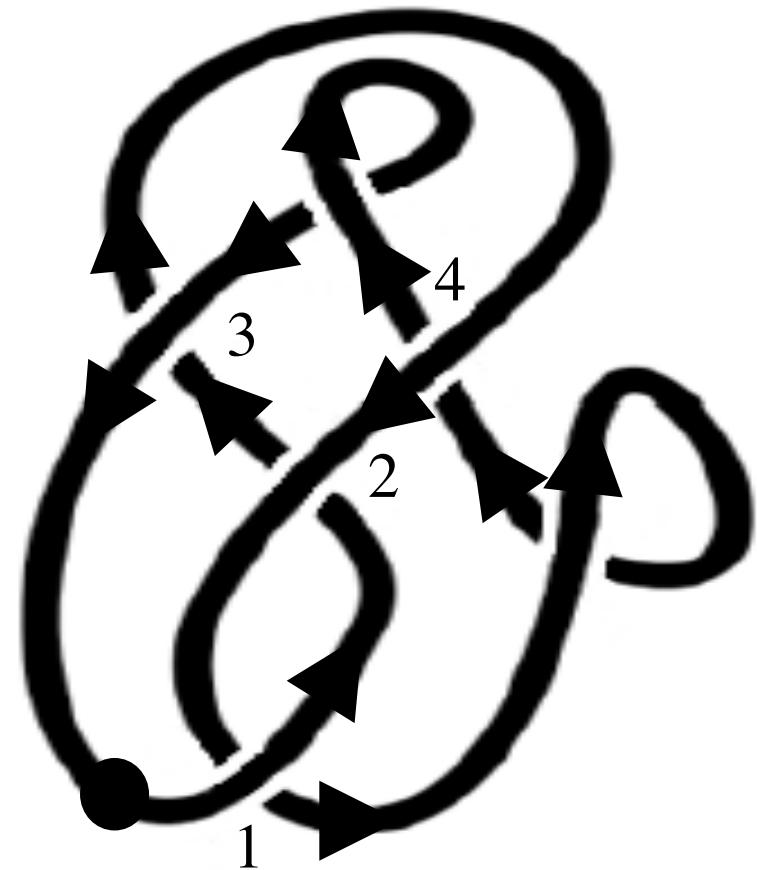
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



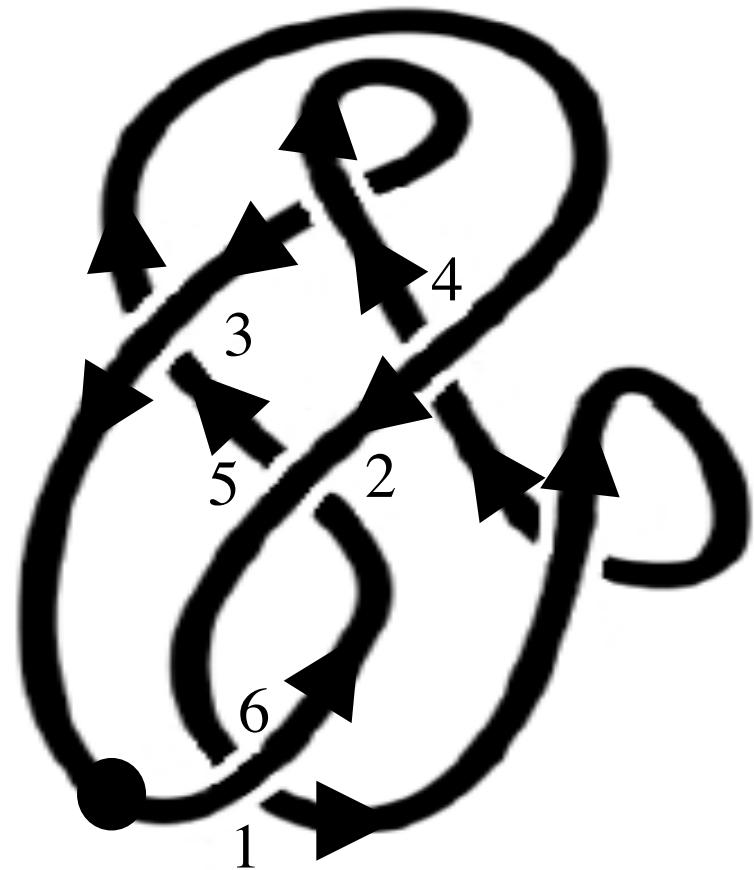
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



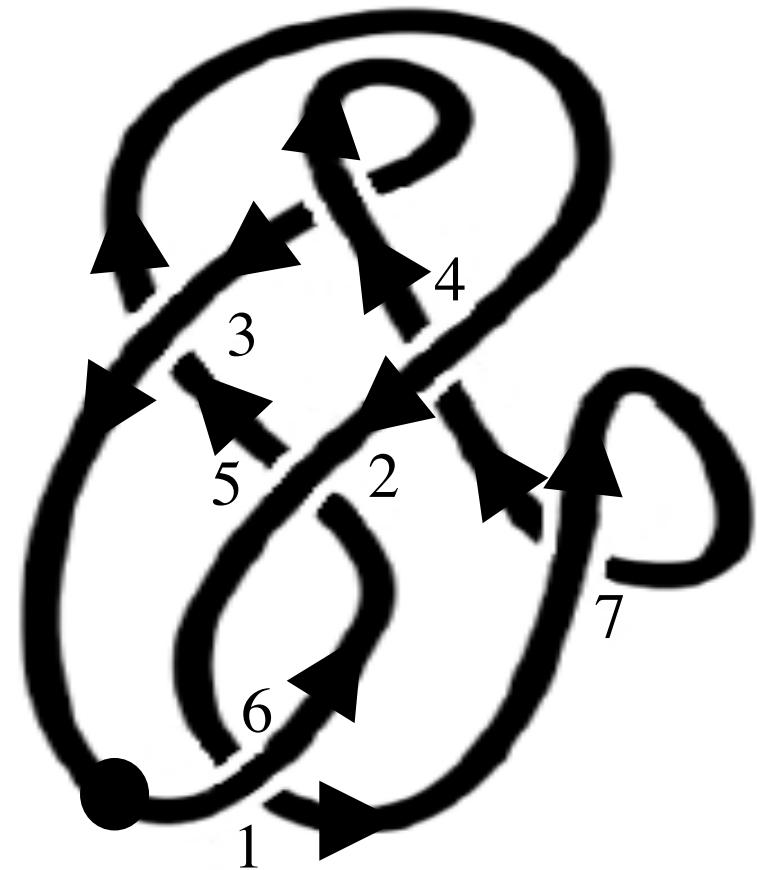
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



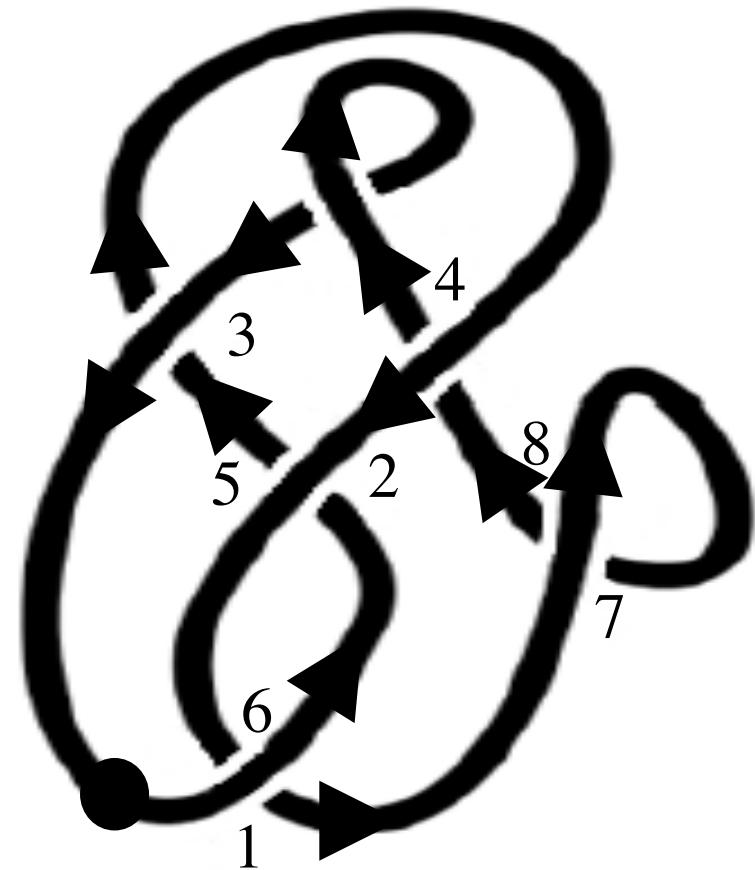
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



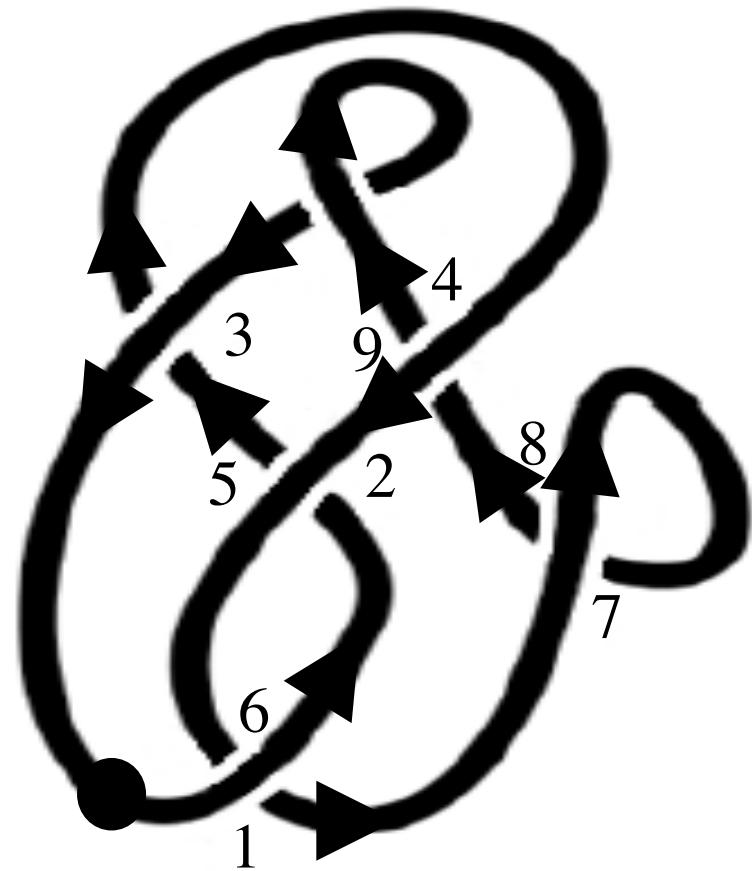
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



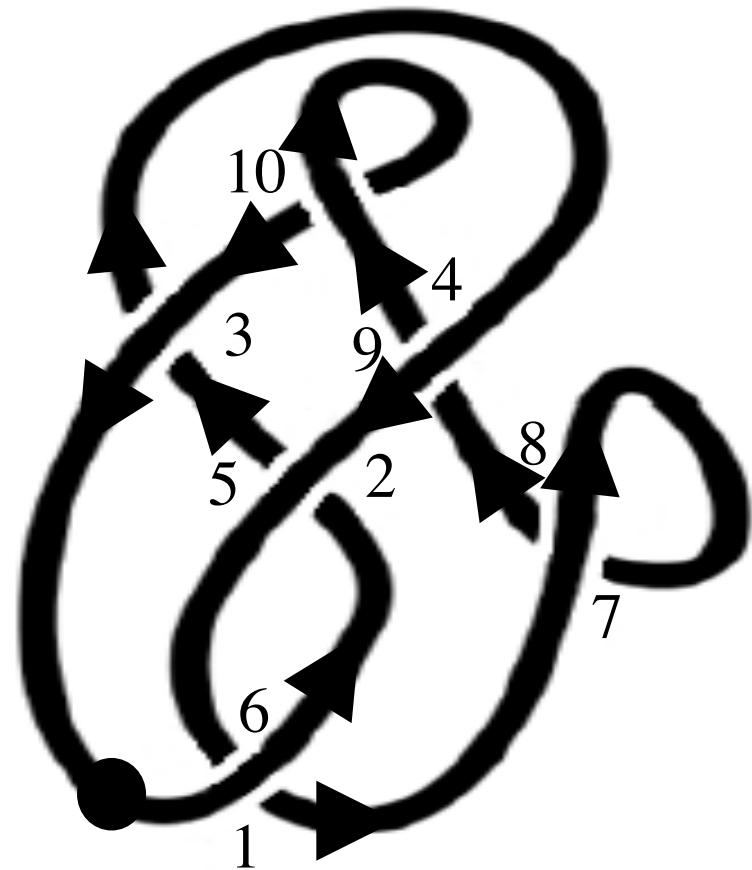
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



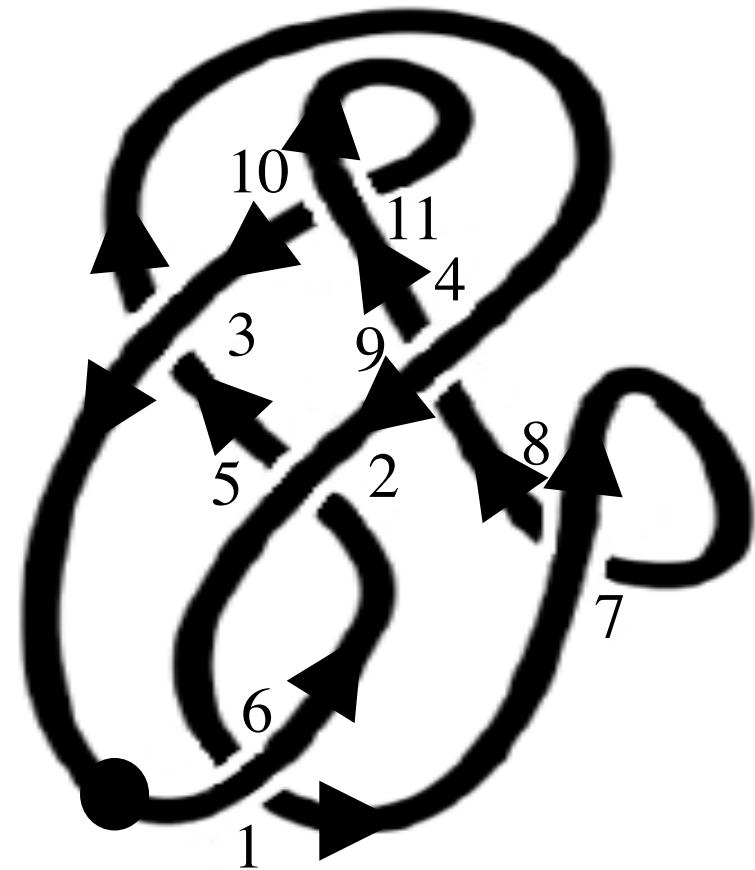
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



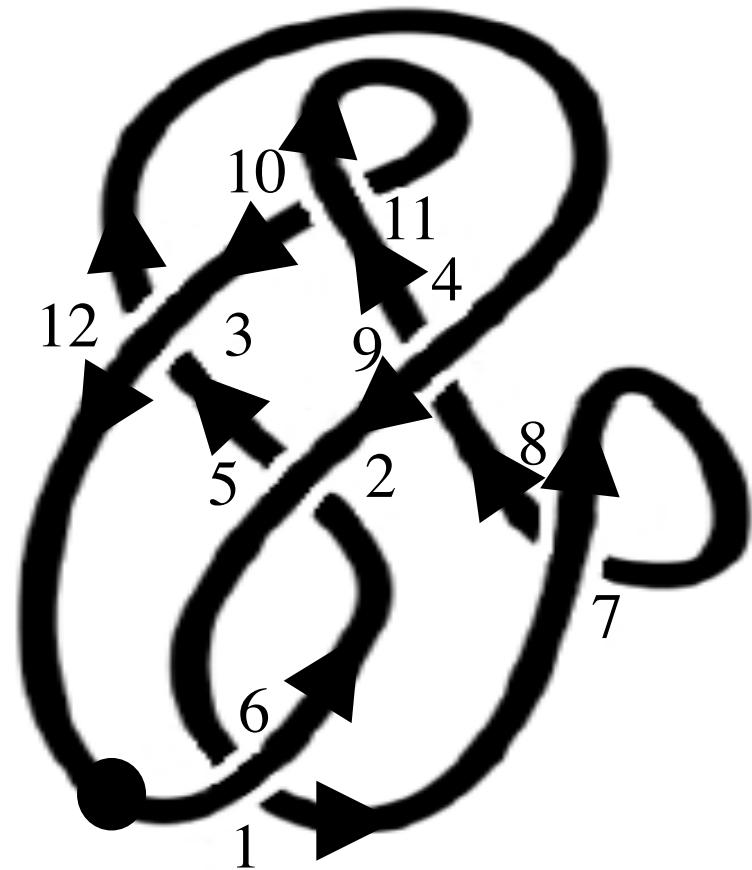
DT (Dowker-Thistlethwaite) code: a worked-out example

- *Remark: mirror knots have same DT code*



DT (Dowker-Thistlethwaite) code: a worked-out example

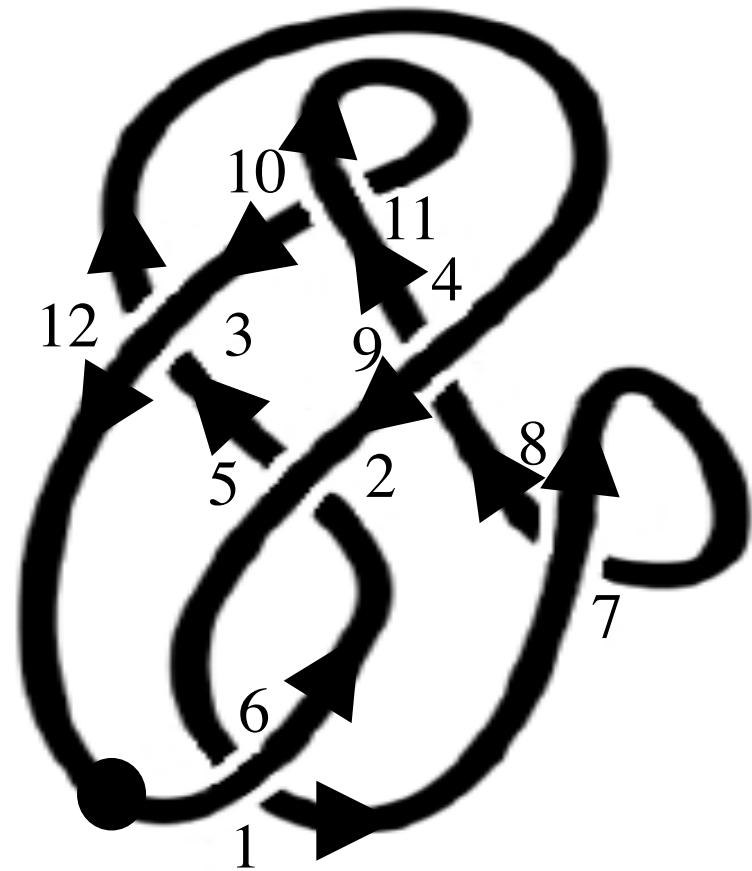
- ***Remark: mirror knots have same DT code***



DT (Dowker-Thistlethwaite) code: a worked-out example

- ***Remark: mirror knots have same DT code***

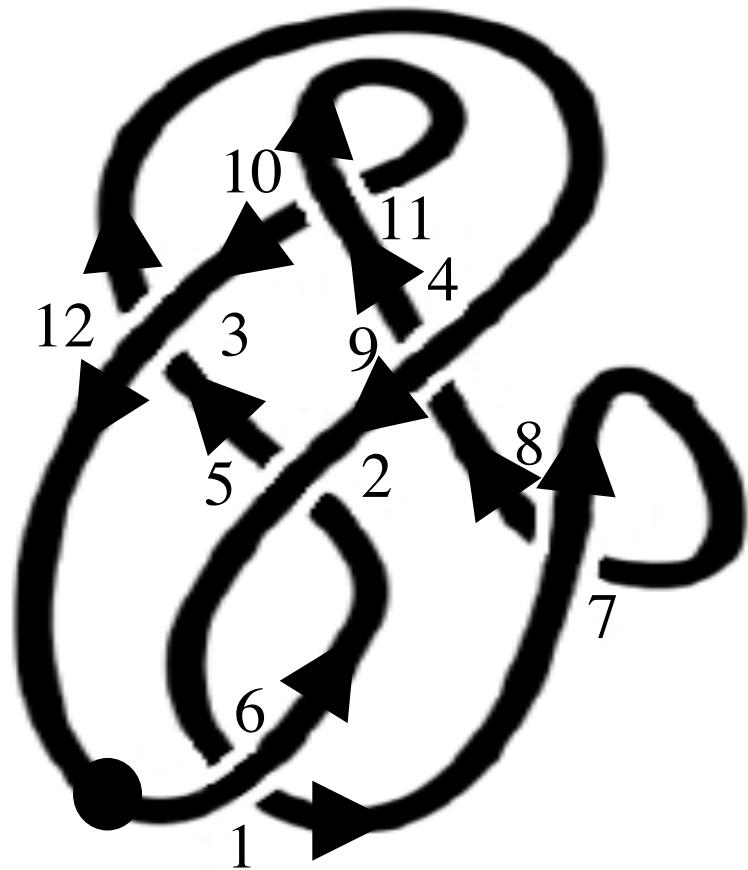
$\{1 2 3 4 5 6 7 8 9 10 11 12\}$



DT (Dowker-Thistlethwaite) code: a worked-out example

- ***Remark: mirror knots have same DT code***

$$\{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12\}$$

$$\begin{Bmatrix} 1 & 3 & 5 & 7 & 9 & 11 \\ 6 & -12 & 2 & 8 & -4 & -10 \end{Bmatrix}$$


DT (Dowker-Thistlethwaite) code: a worked-out example

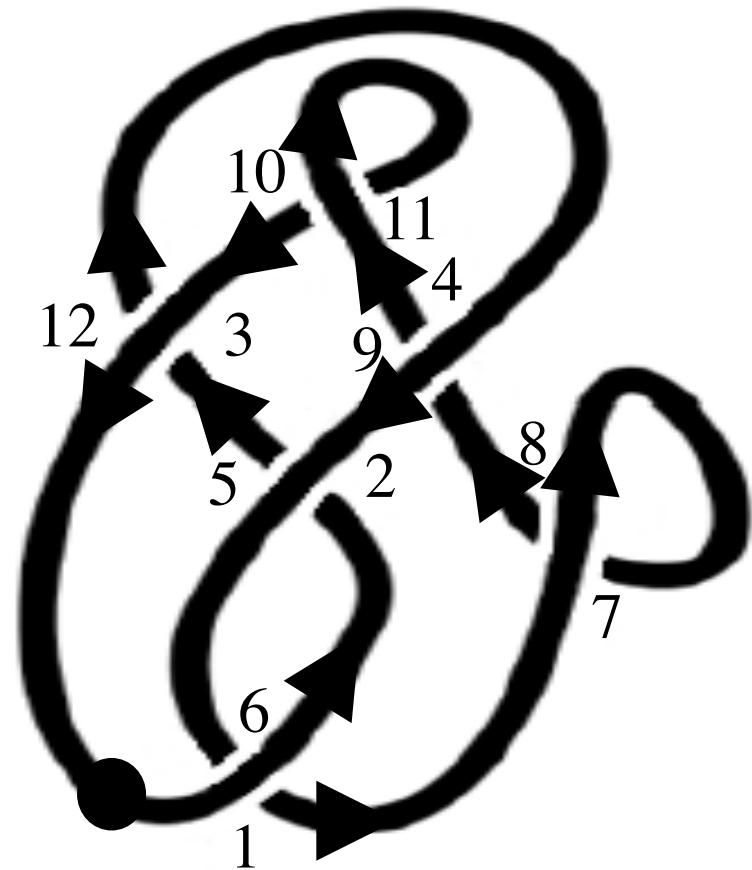
- **Remark: mirror knots have same DT code**

$\{1 2 3 4 5 6 7 8 9 10 11 12\}$

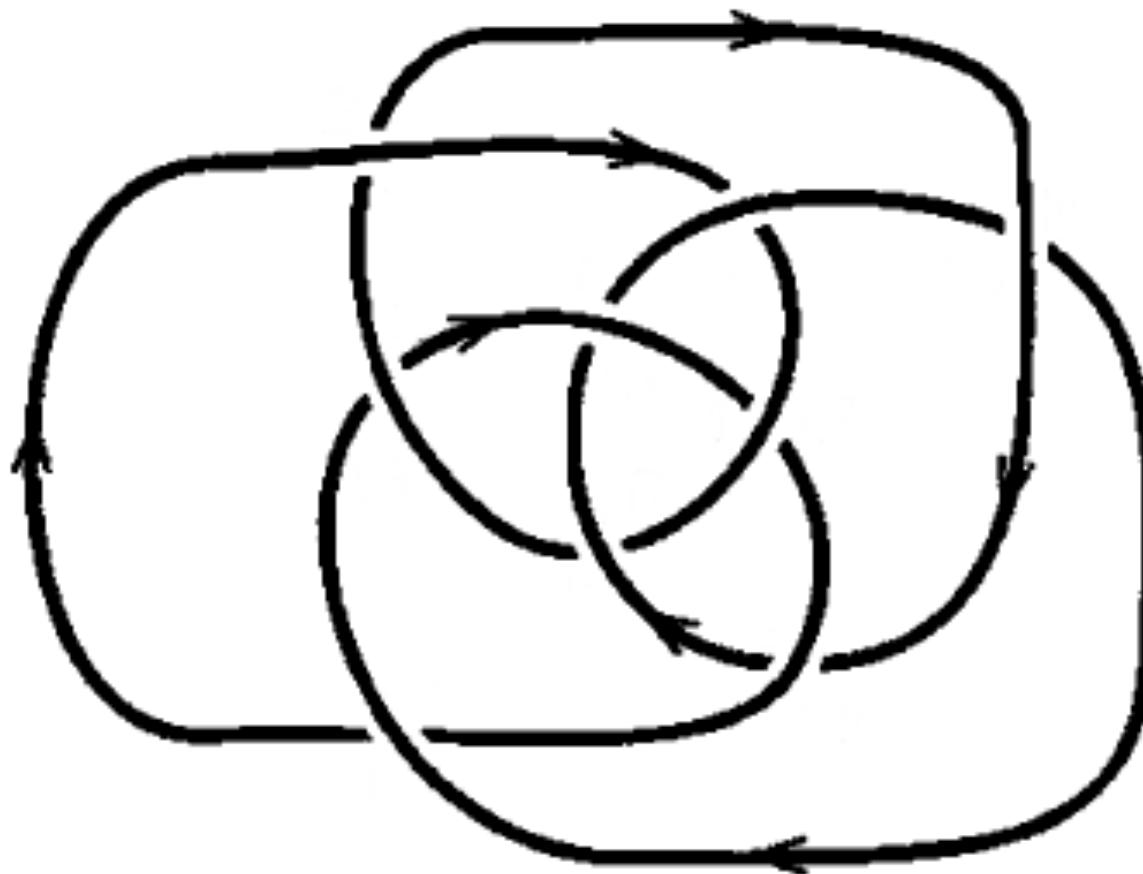
$\begin{Bmatrix} 1 & 3 & 5 & 7 & 9 & 11 \\ 6 & -12 & 2 & 8 & -4 & -10 \end{Bmatrix}$

DT code:

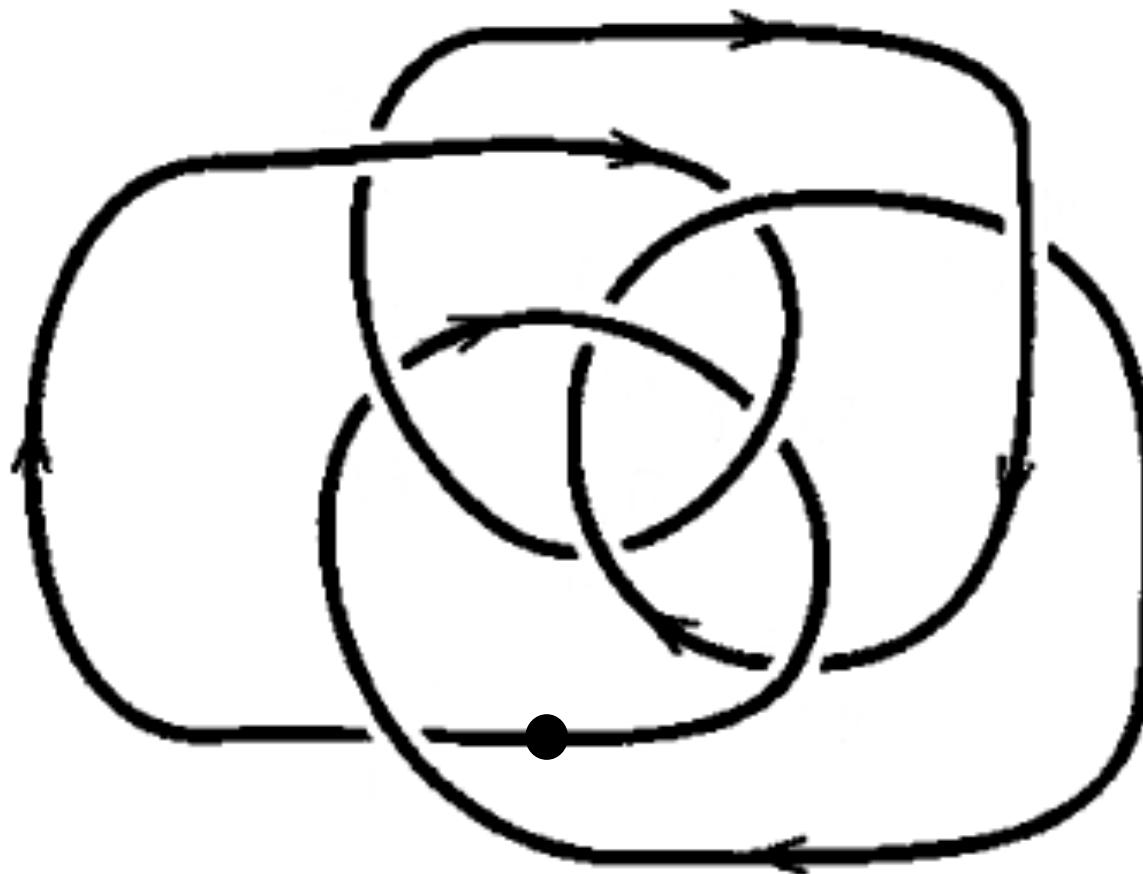
$[6 -12 2 8 -4 -10]$



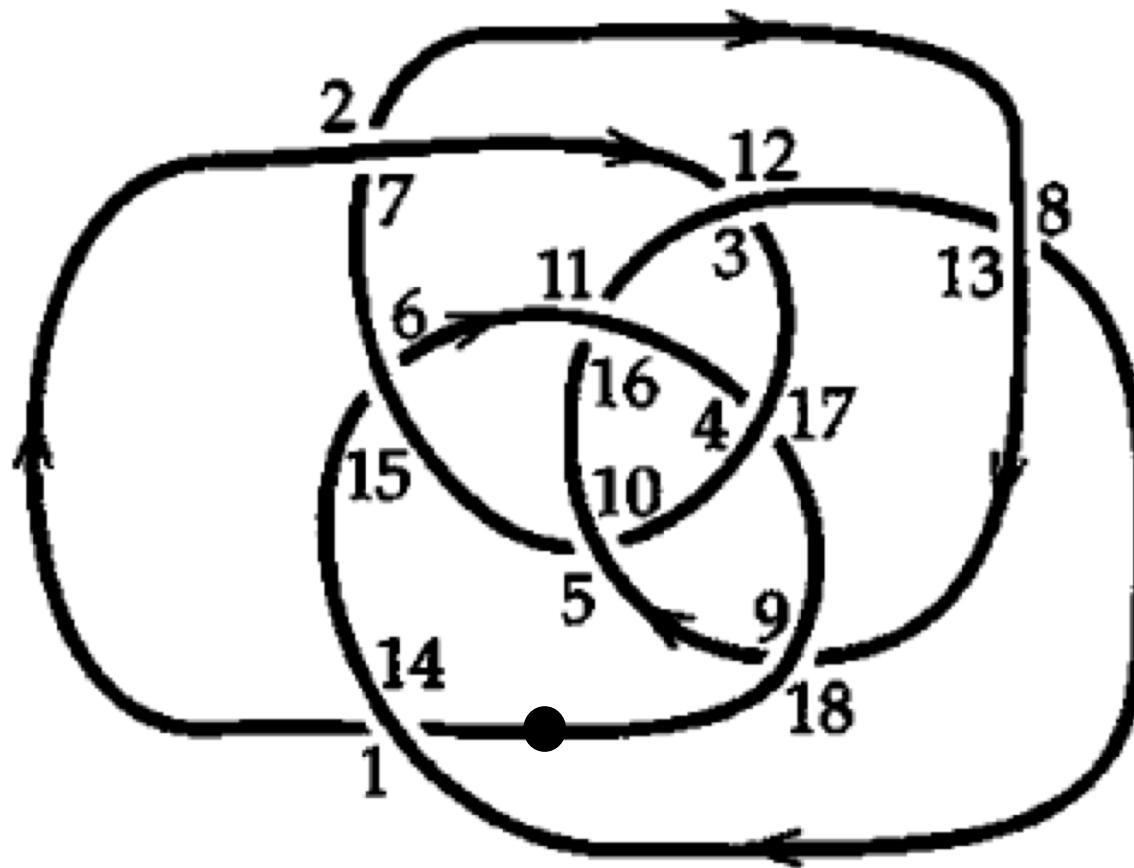
Exercise: determine the DT code of this knot



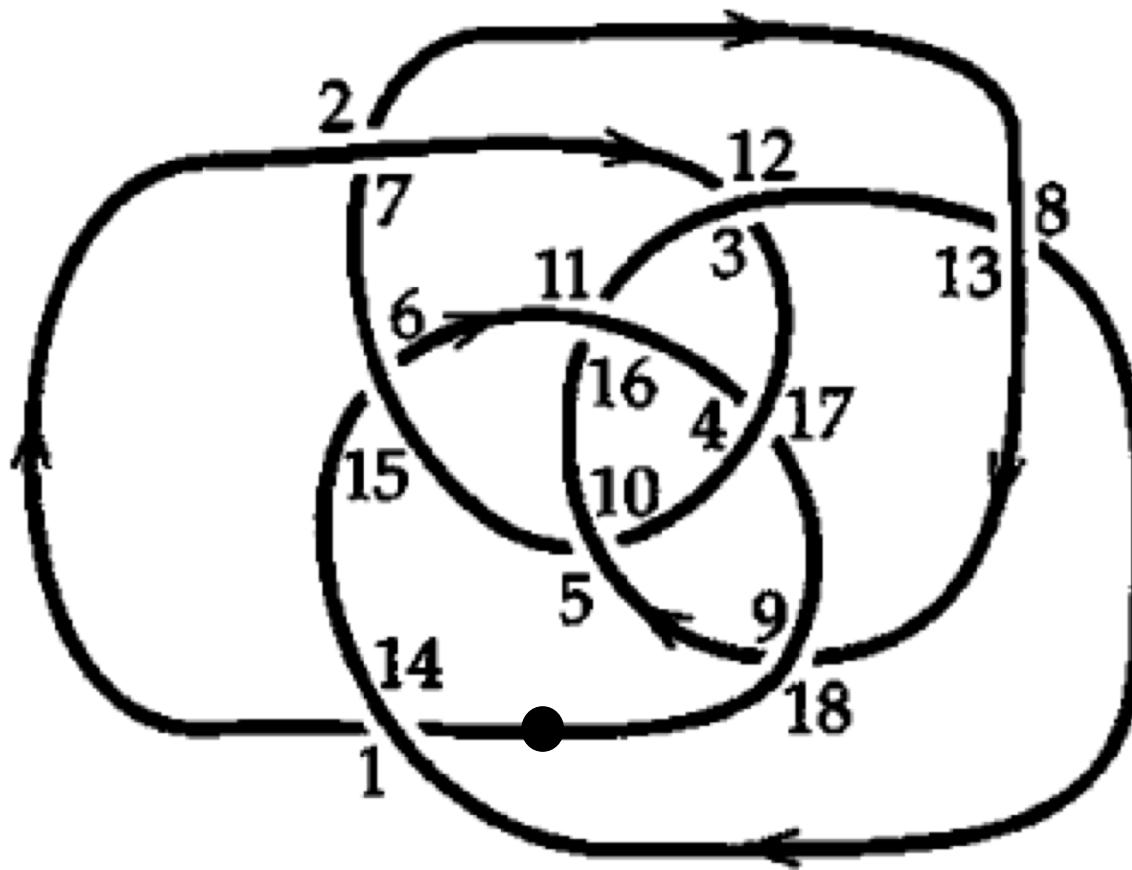
Exercise: determine the DT code of this knot



Exercise: determine the DT code of this knot



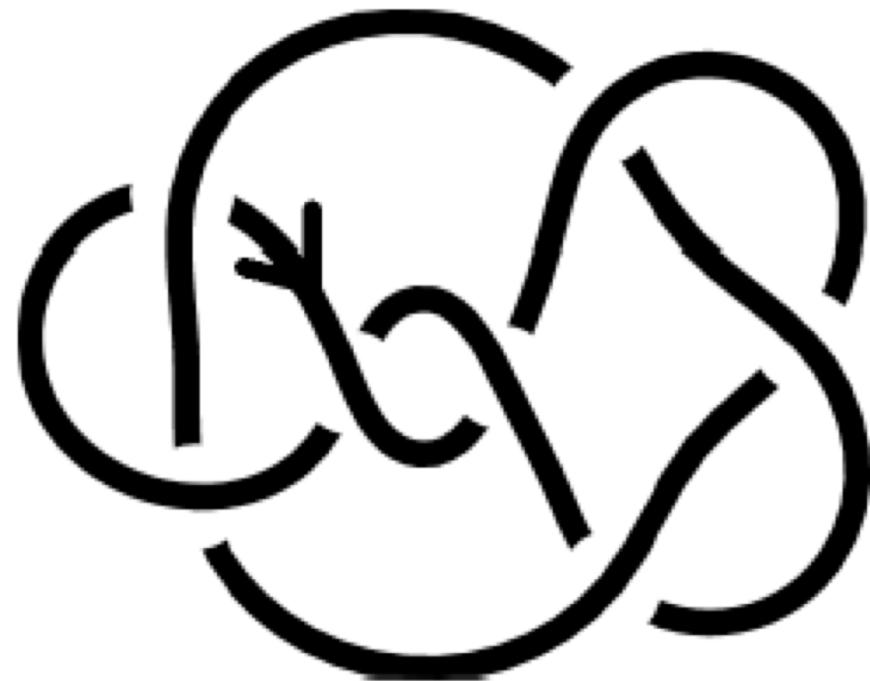
Exercise: determine the DT code of this knot



DT code: [14 12 10 2 18 16 8 6 4]

... and what about these?

(a)



(b)

Jones polynomial $V(K)$

- **Skein relations:**

$$\text{(V.1)} \quad V(\text{O}) = 1$$

Jones polynomial $V(K)$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} \quad V(\text{O}) = 1 \\ \text{(V.2)} \quad \tau^{-1}V\left(\begin{smallmatrix} \nearrow & \searrow \\ + & \end{smallmatrix}\right) - \tau V\left(\begin{smallmatrix} \nearrow & \searrow \\ - & \end{smallmatrix}\right) = \left(\tau^{\frac{1}{2}} - \tau^{-\frac{1}{2}}\right) V\left(\begin{smallmatrix} \nearrow & \searrow \\ = & \end{smallmatrix}\right) \end{cases}$$

Jones polynomial $V(K)$

- **Skein relations:**

$$V(K) : \begin{cases} \text{(V.1)} \quad V(\text{O}) = 1 \\ \text{(V.2)} \quad \tau^{-1}V\left(\begin{smallmatrix} \nearrow & \searrow \\ + \end{smallmatrix}\right) - \tau V\left(\begin{smallmatrix} \nearrow & \searrow \\ - \end{smallmatrix}\right) = \left(\tau^{\frac{1}{2}} - \tau^{-\frac{1}{2}}\right) V\left(\begin{smallmatrix} \nearrow & \searrow \\ = \end{smallmatrix}\right) \end{cases}$$

- **Left-handed trefoil knot T^L :**

$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

Jones polynomial $V(K)$

- **Skein relations:**

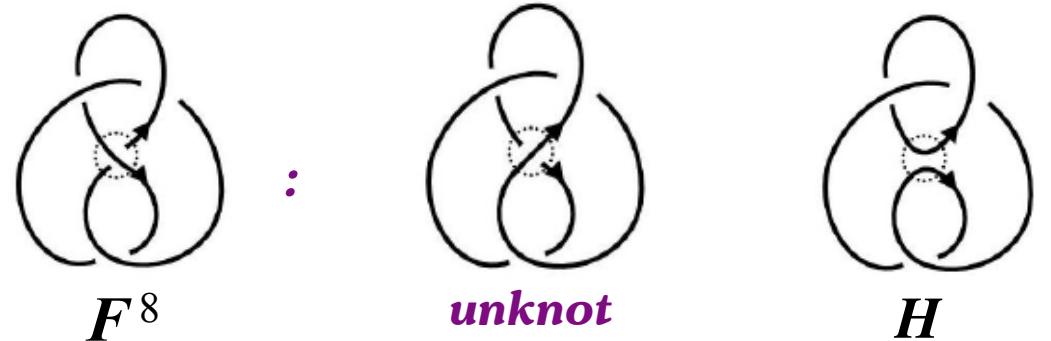
$$V(K) : \begin{cases} \text{(V.1)} \quad V(\text{O}) = 1 \\ \text{(V.2)} \quad \tau^{-1}V\left(\begin{smallmatrix} \nearrow & \searrow \\ + \end{smallmatrix}\right) - \tau V\left(\begin{smallmatrix} \nearrow & \searrow \\ - \end{smallmatrix}\right) = \left(\tau^{\frac{1}{2}} - \tau^{-\frac{1}{2}}\right) V\left(\begin{smallmatrix} \nearrow & \searrow \\ = \end{smallmatrix}\right) \end{cases}$$

- **Left-handed trefoil knot T^L :**

$$V(T^L) = \tau^{-1} + \tau^{-3} - \tau^{-4}$$

- **Figure-of-eight knot F^8 :**

$$V(F^8) = \tau^{-2} - \tau^{-1} + 1 - \tau + \tau^2$$



Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial
3_1	$-t^{-4} + t^{-3} + t^{-1}$

Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial
3_1	$-t^{-4} + t^{-3} + t^{-1}$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$

Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial
3_1	$-t^{-4} + t^{-3} + t^{-1}$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$
5_1	$-t^{-7} + t^{-6} - t^{-5} + t^{-4} + t^{-2}$
5_2	$-t^{-6} + t^{-5} - t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$

Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial
3_1	$-t^{-4} + t^{-3} + t^{-1}$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$
5_1	$-t^{-7} + t^{-6} - t^{-5} + t^{-4} + t^{-2}$
5_2	$-t^{-6} + t^{-5} - t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$
6_1	$t^{-4} - t^{-3} + t^{-2} - 2t^{-1} + 2 - t + t^2$
6_2	$t^{-5} - 2t^{-4} + 2t^{-3} - 2t^{-2} + 2t^{-1} - 1 + t$
6_3	$-t^{-3} + 2t^{-2} - 2t^{-1} + 3 - 2t + 2t^2 - t^3$

Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial
3_1	$-t^{-4} + t^{-3} + t^{-1}$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$
5_1	$-t^{-7} + t^{-6} - t^{-5} + t^{-4} + t^{-2}$
5_2	$-t^{-6} + t^{-5} - t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$
6_1	$t^{-4} - t^{-3} + t^{-2} - 2t^{-1} + 2 - t + t^2$
6_2	$t^{-5} - 2t^{-4} + 2t^{-3} - 2t^{-2} + 2t^{-1} - 1 + t$
6_3	$-t^{-3} + 2t^{-2} - 2t^{-1} + 3 - 2t + 2t^2 - t^3$
7_1	$-t^{-10} + t^{-9} - t^{-8} + t^{-7} - t^{-6} + t^{-5} + t^{-3}$
7_2	$-t^{-8} + t^{-7} - t^{-6} + 2t^{-5} - 2t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$
7_3	$t^2 - t^3 + 2t^4 - 2t^5 + 3t^6 - 2t^7 + t^8 - t^9$
7_4	$t - 2t^2 + 3t^3 - 2t^4 + 3t^5 - 2t^6 + t^7 - t^8$
7_5	$-t^{-9} + 2t^{-8} - 3t^{-7} + 3t^{-6} - 3t^{-5} + 3t^{-4} - t^{-3} + t^{-2}$
7_6	$-t^{-6} + 2t^{-5} - 3t^{-4} + 4t^{-3} - 3t^{-2} + 3t^{-1} - 2 + t$
...	...

Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial	Code
3_1	$-t^{-4} + t^{-3} + t^{-1}$	$\rightarrow \{-4\}(-1+1\ 0+1)$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$	
5_1	$-t^{-7} + t^{-6} - t^{-5} + t^{-4} + t^{-2}$	
5_2	$-t^{-6} + t^{-5} - t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$	
6_1	$t^{-4} - t^{-3} + t^{-2} - 2t^{-1} + 2 - t + t^2$	
6_2	$t^{-5} - 2t^{-4} + 2t^{-3} - 2t^{-2} + 2t^{-1} - 1 + t$	
6_3	$-t^{-3} + 2t^{-2} - 2t^{-1} + 3 - 2t + 2t^2 - t^3$	
7_1	$-t^{-10} + t^{-9} - t^{-8} + t^{-7} - t^{-6} + t^{-5} + t^{-3}$	
7_2	$-t^{-8} + t^{-7} - t^{-6} + 2t^{-5} - 2t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$	
7_3	$t^2 - t^3 + 2t^4 - 2t^5 + 3t^6 - 2t^7 + t^8 - t^9$	
7_4	$t - 2t^2 + 3t^3 - 2t^4 + 3t^5 - 2t^6 + t^7 - t^8$	
7_5	$-t^{-9} + 2t^{-8} - 3t^{-7} + 3t^{-6} - 3t^{-5} + 3t^{-4} - t^{-3} + t^{-2}$	
7_6	$-t^{-6} + 2t^{-5} - 3t^{-4} + 4t^{-3} - 3t^{-2} + 3t^{-1} - 2 + t$	
...	...	

Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial	Code
3_1	$-t^{-4} + t^{-3} + t^{-1}$	$\rightarrow \{-4\}(-1+1\ 0+1)$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$	$\rightarrow \{-2\}(+1-1+1-1+1)$
5_1	$-t^{-7} + t^{-6} - t^{-5} + t^{-4} + t^{-2}$	
5_2	$-t^{-6} + t^{-5} - t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$	
6_1	$t^{-4} - t^{-3} + t^{-2} - 2t^{-1} + 2 - t + t^2$	
6_2	$t^{-5} - 2t^{-4} + 2t^{-3} - 2t^{-2} + 2t^{-1} - 1 + t$	
6_3	$-t^{-3} + 2t^{-2} - 2t^{-1} + 3 - 2t + 2t^2 - t^3$	
7_1	$-t^{-10} + t^{-9} - t^{-8} + t^{-7} - t^{-6} + t^{-5} + t^{-3}$	
7_2	$-t^{-8} + t^{-7} - t^{-6} + 2t^{-5} - 2t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$	
7_3	$t^2 - t^3 + 2t^4 - 2t^5 + 3t^6 - 2t^7 + t^8 - t^9$	
7_4	$t - 2t^2 + 3t^3 - 2t^4 + 3t^5 - 2t^6 + t^7 - t^8$	
7_5	$-t^{-9} + 2t^{-8} - 3t^{-7} + 3t^{-6} - 3t^{-5} + 3t^{-4} - t^{-3} + t^{-2}$	
7_6	$-t^{-6} + 2t^{-5} - 3t^{-4} + 4t^{-3} - 3t^{-2} + 3t^{-1} - 2 + t$	
...	...	

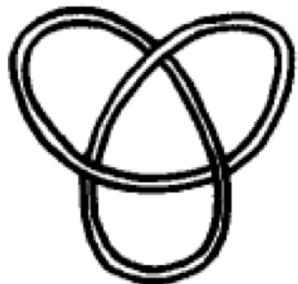
Jones polynomials of first knots

By replacing τ (dummy variable) by t , we have:

Knot type	Jones polynomial	Code
3_1	$-t^{-4} + t^{-3} + t^{-1}$	$\rightarrow \{-4\}(-1+1\ 0+1)$
4_1	$t^{-2} - t^{-1} + 1 - t + t^2$	$\rightarrow \{-2\}(+1-1+1-1+1)$
5_1	$-t^{-7} + t^{-6} - t^{-5} + t^{-4} + t^{-2}$	$\rightarrow \dots \dots$
5_2	$-t^{-6} + t^{-5} - t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$	
6_1	$t^{-4} - t^{-3} + t^{-2} - 2t^{-1} + 2 - t + t^2$	
6_2	$t^{-5} - 2t^{-4} + 2t^{-3} - 2t^{-2} + 2t^{-1} - 1 + t$	
6_3	$-t^{-3} + 2t^{-2} - 2t^{-1} + 3 - 2t + 2t^2 - t^3$	
7_1	$-t^{-10} + t^{-9} - t^{-8} + t^{-7} - t^{-6} + t^{-5} + t^{-3}$	
7_2	$-t^{-8} + t^{-7} - t^{-6} + 2t^{-5} - 2t^{-4} + 2t^{-3} - t^{-2} + t^{-1}$	
7_3	$t^2 - t^3 + 2t^4 - 2t^5 + 3t^6 - 2t^7 + t^8 - t^9$	
7_4	$t - 2t^2 + 3t^3 - 2t^4 + 3t^5 - 2t^6 + t^7 - t^8$	
7_5	$-t^{-9} + 2t^{-8} - 3t^{-7} + 3t^{-6} - 3t^{-5} + 3t^{-4} - t^{-3} + t^{-2}$	
7_6	$-t^{-6} + 2t^{-5} - 3t^{-4} + 4t^{-3} - 3t^{-2} + 3t^{-1} - 2 + t$	
...	...	

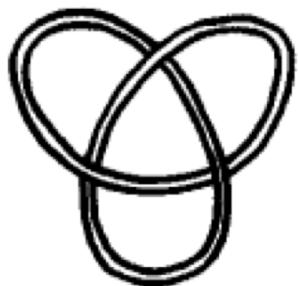
Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

T^L :

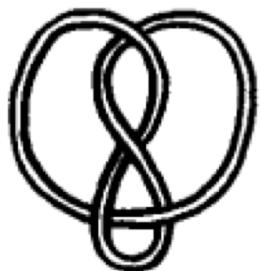


Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

T^L :

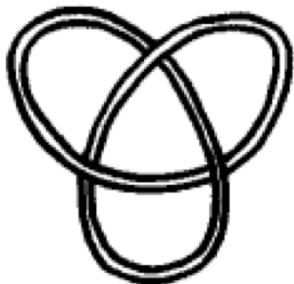


F^8 :

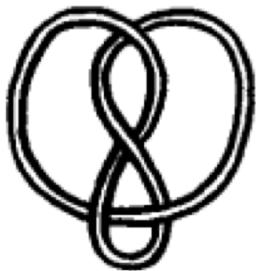
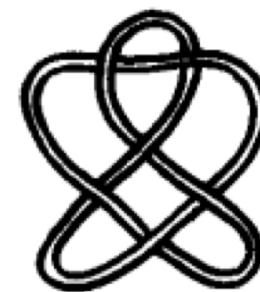
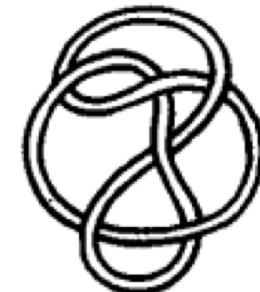


Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

T^L :

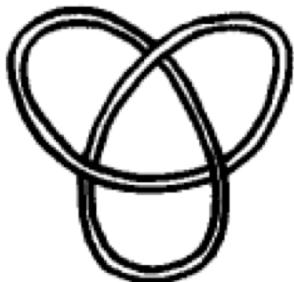


F^8 :



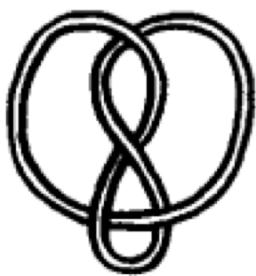
Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

T^L :



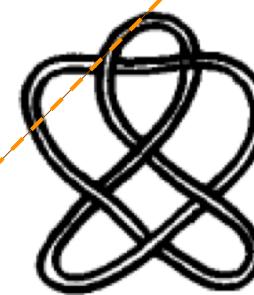
3₁

F^8 :



4₁

6₁



6₂

- **Alexander-Briggs notation**
(knot/link type)



6₃

Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

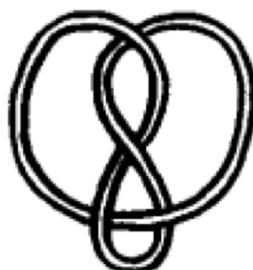
T^L :



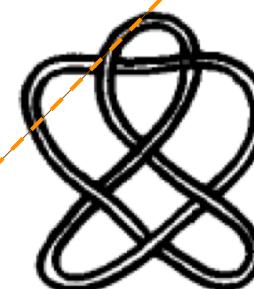
$3_1 \quad 3$

$6_1 \quad 42$

F^8 :



$4_1 \quad 22$

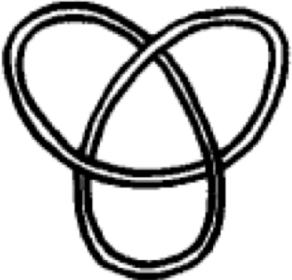
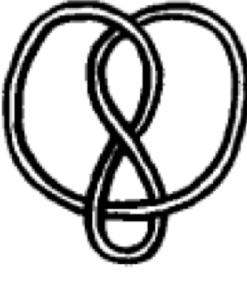
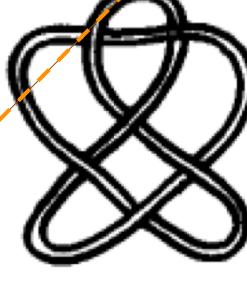
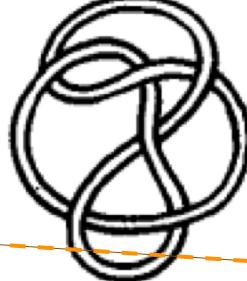


$6_2 \quad 312$

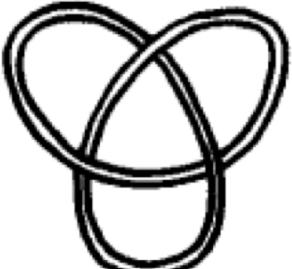
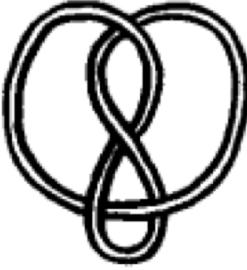
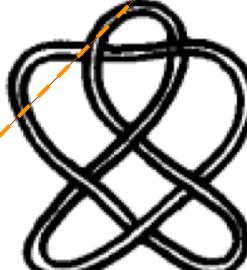
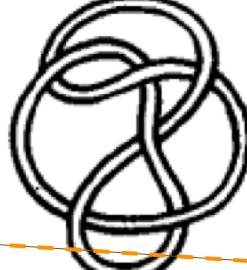
- **Alexander-Briggs notation**
(knot/link type)
- **Conway notation**

$6_3 \quad 2112$

Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

$T^L :$		$3_1 \quad 3$ 0.0		$6_1 \quad 42$ 3.16396322
$F^8 :$		$4_1 \quad 22$ 2.02988321		$6_2 \quad 312$ 4.40083251
	<ul style="list-style-type: none">- Alexander-Briggs notation (knot/link type)- Conway notation- hyperbolic volume			$6_3 \quad 2112$ 5.69302109

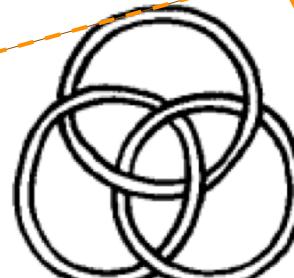
Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

$T^L :$		$3_1 \quad 3$			$6_1 \quad 42$
		0.0			3.16396322
		$\{-4\} (-1 \ 1 \ 0 \ 1)$			$\{-4\} (1 -1 \ 1 -2 \ 2 -1 \ 1)$
$F^8 :$		$4_1 \quad 22$			$6_2 \quad 312$
		2.02988321			4.40083251
		$\{-2\} (1 -1 \ 1 -1 \ 1)$			$\{-5\} (1 -2 \ 2 -2 \ 2 -1 \ 1)$
<ul style="list-style-type: none"> - Alexander-Briggs notation (knot/link type) - Conway notation - hyperbolic volume - Jones notation (minimum degree & coefficients) 					
		$6_3 \quad 2112$			5.69302109
					$\{-3\} (-1 \ 2 -2 \ 3 -2 \ 2 -1)$

Alexander-Briggs notation (up to 10 crossings)

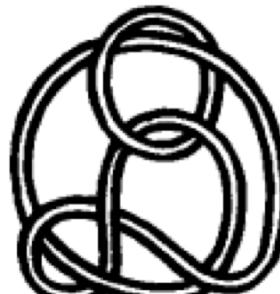
$\left\{ \frac{-5}{2} \right\} (-1 \ 1 \ -2 \ 1 \ -1 \ 1 \ -1)$

8_{15}^2 22,2,2-
3.66386237



$\left\{ \frac{-6}{2} \right\} (-1 \ 3 \ -2 \ 4 \ -2 \ 3 \ -1)$

of link components

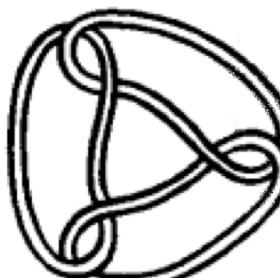


$\left\{ \frac{1}{2} \right\} (-2 \ 2 \ -2 \ 2 \ -2 \ 1 \ -1)$

8_{16}^2 211,2,2-
5.33348956

$\left\{ \frac{-8}{2} \right\} (1 \ 0 \ 1 \ 0 \ 2)$

6_3^3 2,2,2-
0.0



$\left\{ \frac{2}{2} \right\} (1 \ -2 \ 3 \ -1 \ 3 \ -1 \ 1)$

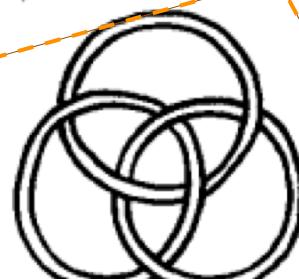
6_1^3 2,2,2
5.33348956

... ...

Alexander-Briggs notation (up to 10 crossings)

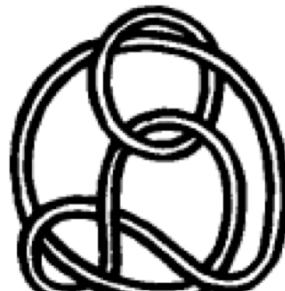
$\left\{ \frac{-5}{2} \right\} (-1 \ 1 \ -2 \ 1 \ -1 \ 1 \ -1)$

8_{15}^2 22,2,2-
3.66386237



$\left\{ \frac{-6}{2} \right\} (-1 \ 3 \ -2 \ 4 \ -2 \ 3 \ -1)$

of link components

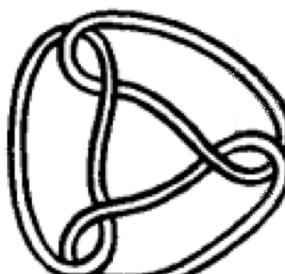


$\left\{ \frac{1}{2} \right\} (-2 \ 2 \ -2 \ 2 \ -2 \ 1 \ -1)$

8_{16}^2 211,2,2-
5.33348956

$\left\{ \frac{-8}{2} \right\} (1 \ 0 \ 1 \ 0 \ 2)$

6_3^3 2,2,2-
0.0



$\left\{ \frac{2}{2} \right\} (1 \ -2 \ 3 \ -1 \ 3 \ -1 \ 1)$

6_1^3 2,2,2
5.33348956

... ...

Alexander-Briggs notation up to 10 crossings; then DT code of type “ $Kc_{\min}a123$ ” or “ $Kc_{\min}n123$ ” in lexicographical order

Online databases - 1

Data bases of knots and invariants:

- Knot Atlas by Dror Bar Natan and Scott Morrison

[http://katlas.math.toronto.edu/wiki/Main Page](http://katlas.math.toronto.edu/wiki/Main_Page)

The Knot Atlas

Page Discussion Read View source View history Search Go Search

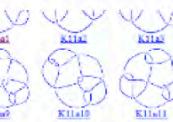
Main Page

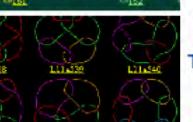
The Knot Atlas

Welcome to the Knot Atlas! This site aims to be a complete user-editable knot atlas, in the [wiki](#) spirit of [Wikipedia](#). It is being developed primarily by [Scott](#) and [Dror](#), but any one can edit almost anything, anytime. Some advice can be found at [how you can contribute](#).

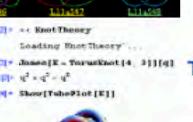
As with all evolving projects, the most important part of the Knot Atlas is the [To Do list](#).

 The Rolfsen Table of knots with up to 10 crossings.

 The Hoste-Thistlethwaite Table of 11 Crossing Knots.

 The Thistlethwaite Link Table.

 36 Torus Knots with up to 36 Crossings.

 The Mathematica Package KnotTheory'.

 The Take Home Database

Extras: Tube plots with [TubePlot](#), [WikiLink](#) - The Mediawiki Interface.

See also: Jeremy Green's [Table of Virtual Knots](#), Chuck Livingston's [amazing Table of Knot Invariants](#), Hermann Gruber's [atlas of rational knots](#), Paul Zinn-Justin's [alternating virtual link database](#) and Slavik Jablan and Radmila Sazdanovic's [webMathematica LinkKnot](#).

"God created the knots, all else in topology is the work of mortals."

Leopold Kronecker (modified)

Online databases - 2

Data bases of knots and invariants:

• KnotInfo by Chuck Livingston

<http://www.indiana.edu/~knotinfo/>

Table of Knot Invariants

Please try [LinkInfo:Table of Link Invariants](#) and give us feedback.

Please Cite KnotInfo* Calculators: Concordance, Homology	Visitor List <small>Unknown Values (last updated: 14 June 2014)</small>	Full Database Download Acknowledgments		
Build a Knot Table. Welcome to KnotInfo. Check the desired boxes in the sections below and then click SUBMIT on the page to produce your desired table of knots. If you do not know the name of a particular knot you are interested in, KnotFinder can help you.				
Preferences (Select invariants to hide.) New advanced search feature is now available! [Advanced Search]				
Select knots you want tabulated. [Advanced Search] Specify crossing numbers. The letters a and n designate alternating and nonalternating knots. <i>12 crossing knots are grouped.</i>				
<input checked="" type="checkbox"/> 3-6 11a 12a (601-800) 12n (201-400)	<input type="checkbox"/> 7 11n 12a (801-1000) 12n (401-600)	<input type="checkbox"/> 8 12a (1-200) 12a (1001-1200) 12n (601-800)	<input type="checkbox"/> 9 12a (201-400) 12a (1200-1288) 12n (801-888)	<input type="checkbox"/> 10 12a (401-600) 12n (1-200) All
Names and descriptions. Please select the naming and notational descriptions desired. <i>Names are linked to diagrams.</i>				
<input checked="" type="checkbox"/> Name DT Notation Gauss Notation Fibered	<input type="checkbox"/> Name Rank DT Rank PD Notation Monodromy	<input type="checkbox"/> Alternating Classical Conway Name Braid Notation Tetrahedral Census Name	<input type="checkbox"/> DT Name Conway Notation Two-Bridge Notation	
Three-Dimensional Invariants.				
<input type="checkbox"/> Arc Index Crosscap Number Nakanishi Index Super Bridge Index Tunnel Number	<input type="checkbox"/> Braid Index Crossing Number Polygon Index Symmetry Type Turaev Genus	<input type="checkbox"/> Braid Length Determinant Seifert Matrix Three Genus Unknotting Number	<input type="checkbox"/> Bridge Index Morse-Novikov Number Small or Large Thurston-Bennequin Number Width	
Concordance and Four-Dimensional Invariants.				
<input type="checkbox"/> Arf Invariant Smooth Concordance Order Topological Four Genus Ozsváth-Szabó Tau-Invariant Topological Concordance Crosscap Number	<input type="checkbox"/> Four-Ball Crossing Number Topological Concordance Order Smooth 4D Crosscap Number Signature	<input type="checkbox"/> Smooth Concordance Genus Algebraic Concordance Order Topological 4D Crosscap Number Signature Function	<input type="checkbox"/> Topological Concordance Genus Smooth 4D Genus Rasmussen Invariant Smooth Concordance Crosscap Number	
Positivity.				
<input type="checkbox"/> Positive Braid Positive Braid Notation	<input type="checkbox"/> Positive Positive PD notation	<input type="checkbox"/> Strongly Quasipositive Strongly Quasipositive Braid Notation	<input type="checkbox"/> Quasipositive Quasipositive Braid Notation	
Polynomial Invariants.				
<input type="checkbox"/> A Polynomial Jones Polynomial Show polynomials as coefficient vectors	<input type="checkbox"/> Alexander Polynomial Kauffman Polynomial	<input type="checkbox"/> Conway Polynomial Khovanov Polynomial	<input type="checkbox"/> HOMFLY Polynomial Khovanov Torsion Polynomial	
Hyperbolic Invariants.				
<input type="checkbox"/> Volume Longitude Translation Chern-Simons Invariant	<input type="checkbox"/> Maximum Cusp Volume Meridian Translation	<input type="checkbox"/> Longitude Length Other Short Geodesics	<input type="checkbox"/> Meridian Length Full Symmetry Group	
Diagrams and Other Information. Check if you want to see small diagrams (linked to larger figures) and if you want the table to include links to the Knot Atlas site.				
<input type="checkbox"/> Diagram	Knot Atlas Page			
Submission. Click to submit query.				

Online databases - 2

- KnotFinder powered by Knotscape on KnotInfo website
<http://www.indiana.edu/~knotinfo/knotfinder.php>

Input: DT notation for prime knots up to 13 crossings

Output: Classical name

- KnotSketcher by Jiho Kim Java program

<http://www.indiana.edu/~knotinfo/homelinks/knotsketcher.html>

Input: Drawing

Output: DT name

KNOT THEORY

D. Bar Natan

[http://katlas.math.toronto.edu/wiki/The Mathematica Package KnotTheory](http://katlas.math.toronto.edu/wiki/The_Mathematica_Package_KnotTheory)

Input:

- Any notation you can think of ...

Can compute:

- Almost anything you can come up with in classical knot theory
- Khovanov homology-J. Green, other A. Shumakovitch KhoHo

Cotton Seed.

- Heegaard Floer by Jean Marie Droz (other: J. Baldwin, W.D. Gillam)

KNOTSCAPE

Jim Hoste & Morwen Thistlethwaite

With the input from Bruce Ewing, Ken Millett, Ken Stephenson and Jeff Weeks (SnapPea, new version SnapPy by M. Culler and N. Dunfield)

- <http://pzacad.pitzer.edu/~jhoste/HosteWebPages/kntscp.html>

INPUT:

- Braid
- Dowker/Thistlethwaite code (Gauss code)
- by selecting from the knot tables- classical name
- or by drawing with a mouse

KNOTSCAPE

Jim Hoste & Morwen Thistlethwaite

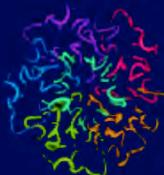
- <http://pzacad.pitzer.edu/~jhoste/HosteWebPages/kntscp.html>

OUTPUT:

- find the knot (or its summands with respect to connected sum) in the tables (provided it is truly a 16 crossing knot or less!),
- draw a pretty picture of it,
- compute its HOMFLY, Kauffman, Jones, or Alexander polynomial,
- compute representations of its fundamental group into the symmetric group on five letters, or
- compute various hyperbolic invariants a la Snap Pea.

LinKnot

Slavik V Jablan & Sazdanovic Radmila
<http://www.mi.sanu.ac.rs/vismath/linknot/>



LinKnot

by S. Jablan, R. Sazdanovic

including

KNOT 2000

by M. Ochiai, N. Imafuri

and

KnotTheory

+

some functions from the program

KhoHo

by A. Shumakovitch

+

some functions from the program

SnapPy

by M. Culler and N. Dunfield

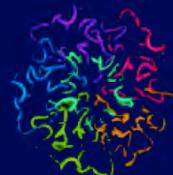
New version, updated 20.02.2011, working in *Mathematica* 5.2, 6.0, 7.0, and 8.0,

with more than 100 new functions,

working also with virtual knots and links, hyperbolic volume of knots and links, Tutte polynomials of knots and links (see the program *Tutte80.nb* in the directory *Tutte Program*), and knots and polyhedra (see the program *POLYKNOTS80.nb*)

LinKnot

Slavik V Jablan & Sazdanovic Radmila
<http://www.mi.sanu.ac.rs/vismath/linknot/>



LinKnot

by S. Jablan, R. Sazdanovic

including

KNOT 2000

by M. Ochiai, N. Imafuri

and

KnotTheory

+

some functions from the program

KhoHo

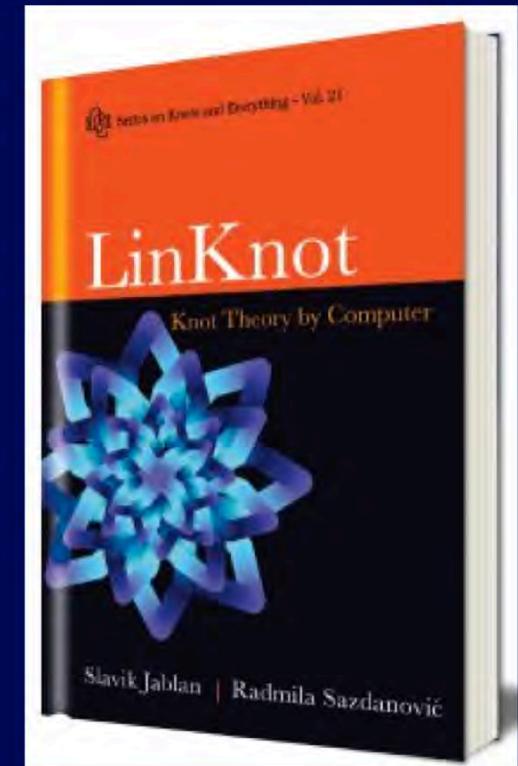
by A. Shumakovitch

+

some functions from the program

SnapPy

by M. Culler and N. Dunfield



New version, updated 20.02.2011, working in *Mathematica* 5.2, 6.0, 7.0, and 8.0,

with more than 100 new functions,

working also with virtual knots and links, hyperbolic volume of knots and links, Tutte polynomials of knots and links (see the program *Tutte80.nb* in the directory *Tutte Program*), and knots and polyhedra (see the program *POLYKNOTS80.nb*)

Alexander-Briggs tabulation vs. alternative tabulations

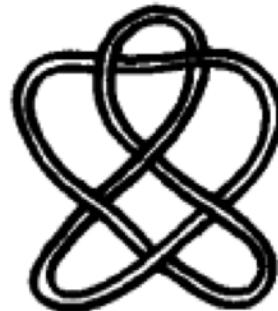
6_1 42
3.16396322

{-4} (1 -1 1 -2 2 -1 1)

Alexander-Briggs tabulation vs. alternative tabulations

6_1 42
3.16396322

$\{-4\} (1 -1 1 -2 2 -1 1)$



6_2 312
4.40083251

$\{-5\} (1 -2 2 -2 2 -1 1)$

Alexander-Briggs tabulation vs. alternative tabulations

6_1 42
3.16396322

$\{-4\} (1 -1 1 -2 2 -1 1)$



6_2 312
4.40083251

$\{-5\} (1 -2 2 -2 2 -1 1)$

6_3
5.69302109

$\{-3\} (-1 2 -2 3 -2 2 -1)$

Alexander-Briggs tabulation vs. alternative tabulations

6_1 42
3.16396322

$\{-4\} (1 -1 1 -2 2 -1 1)$



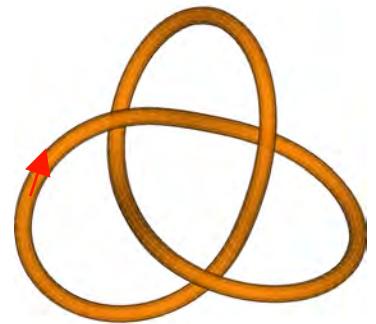
6_2 312
4.40083251

$\{-5\} (1 -2 2 -2 2 -1 1)$

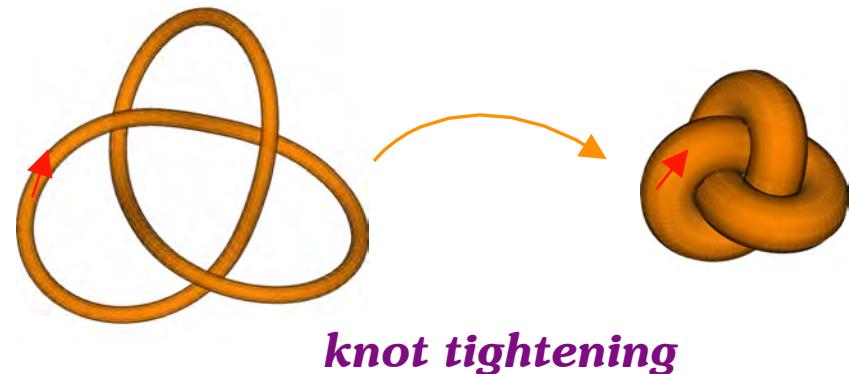
6_3 5.69302109

$\{-3\} (-1 2 -2 3 -2 2 -1)$

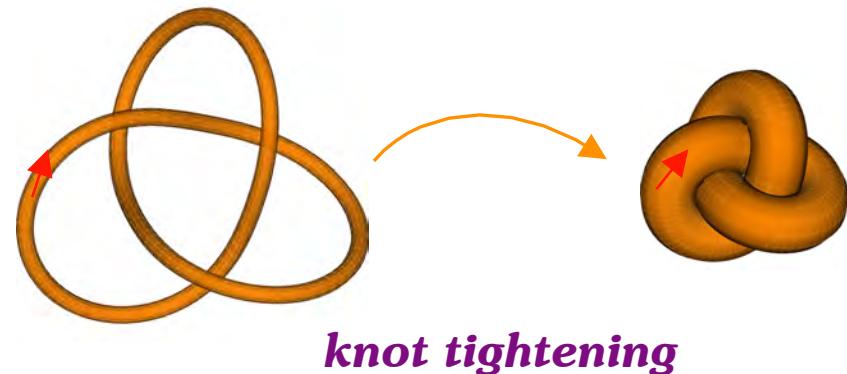
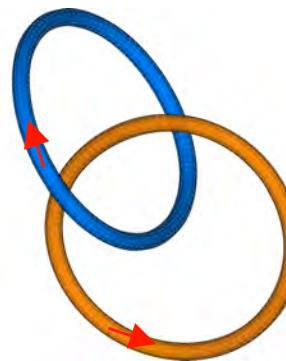
Knot tightening software



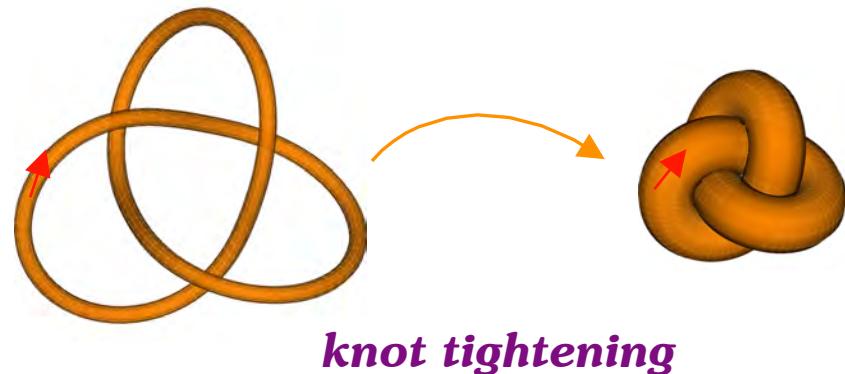
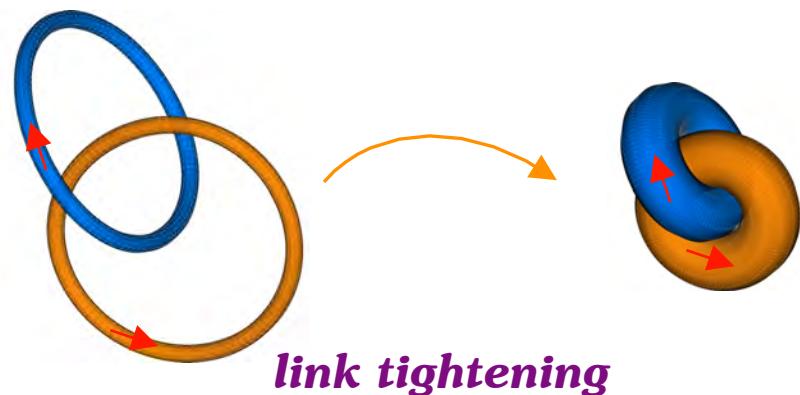
Knot tightening software



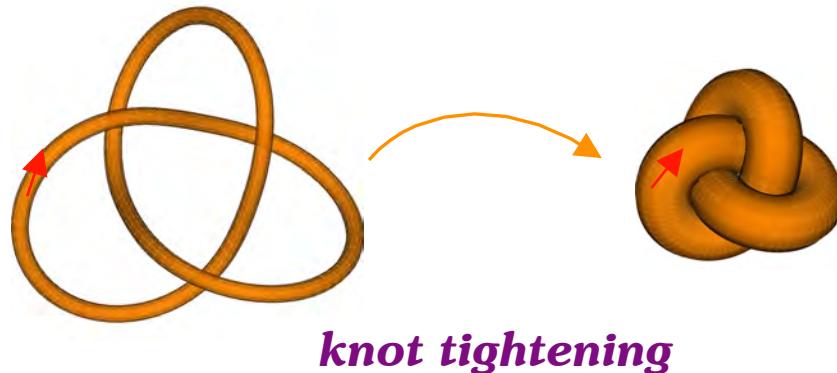
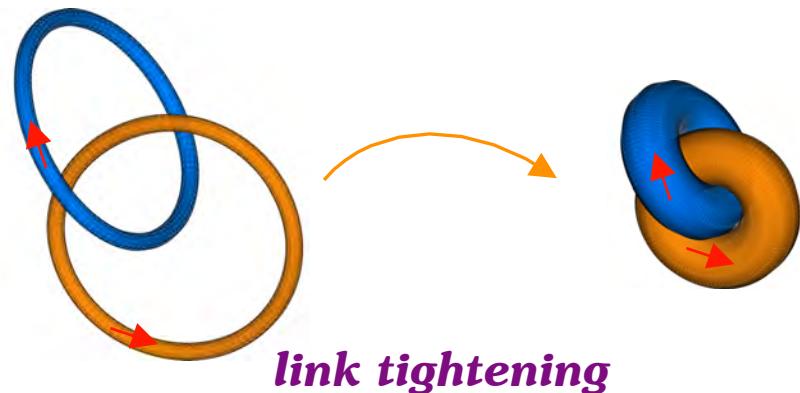
Knot tightening software



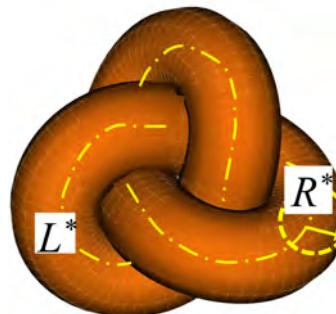
Knot tightening software



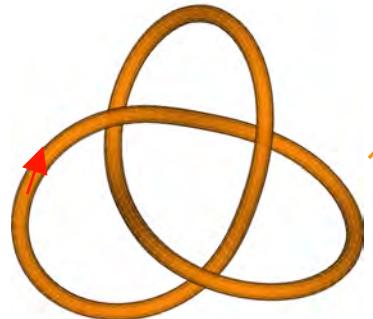
Knot tightening software



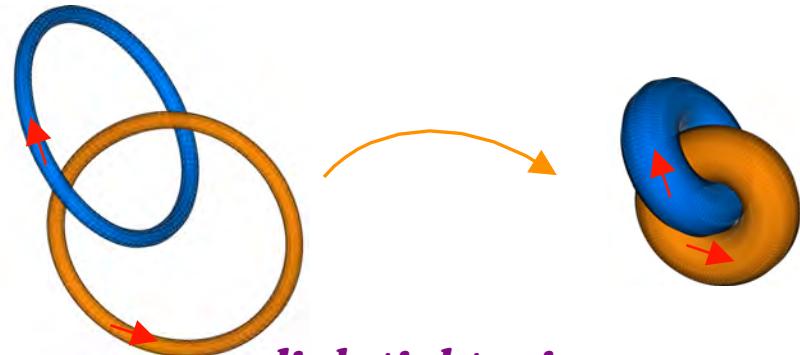
- **Ropelength:** $\lambda = \frac{L_{\min}}{R_{\max}} = \frac{L^*}{R^*}$



Knot tightening software

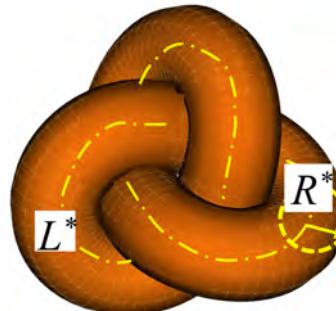


knot tightening



link tightening

- **Ropelength:** $\lambda = \frac{L_{\min}}{R_{\max}} = \frac{L^*}{R^*}$



- SONO by Piotr Pieransky
<http://etacar.put.poznan.pl/piotr.pieranski/>

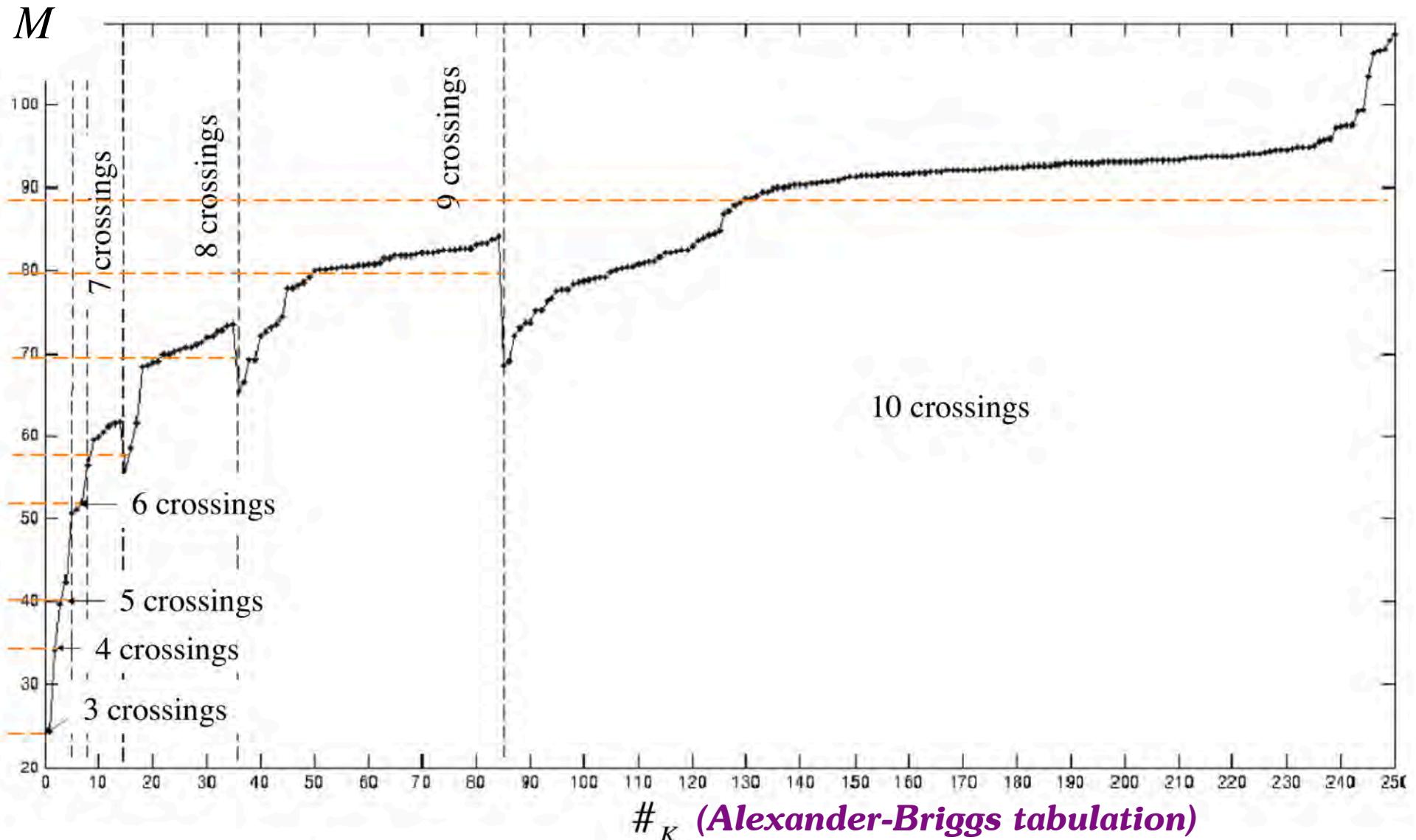
- Ridgerunner by Jason Cantarella
<http://www.jasoncantarella.com/webpage/index.php?title=Software>

Tight knots and groundstate energy spectrum

M = magnetic/elastic energy (in non-dimensional units)

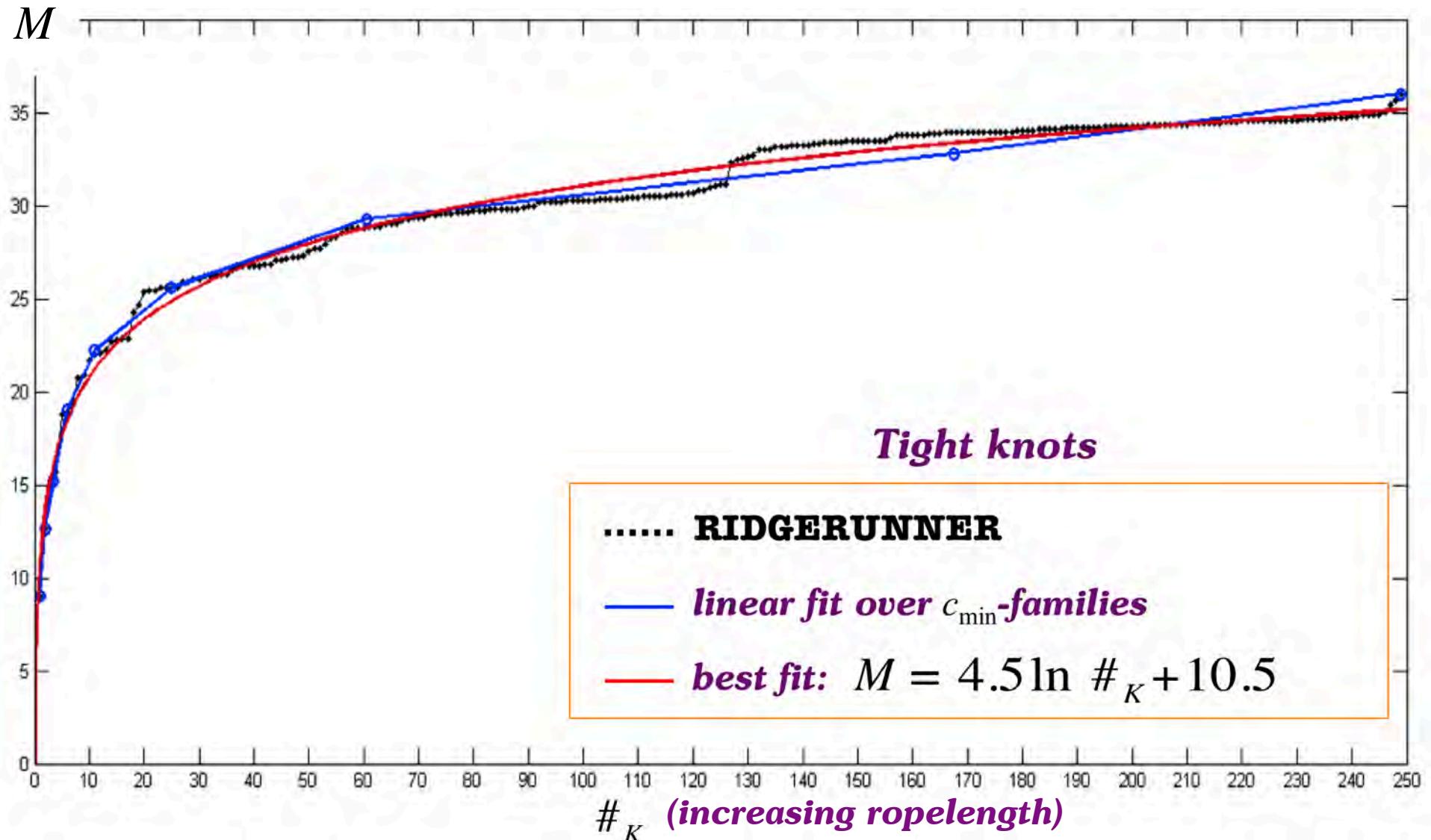
Tight knots and groundstate energy spectrum

M = magnetic (elastic) energy (in non-dimensional units)



Tight knots and groundstate energy spectrum

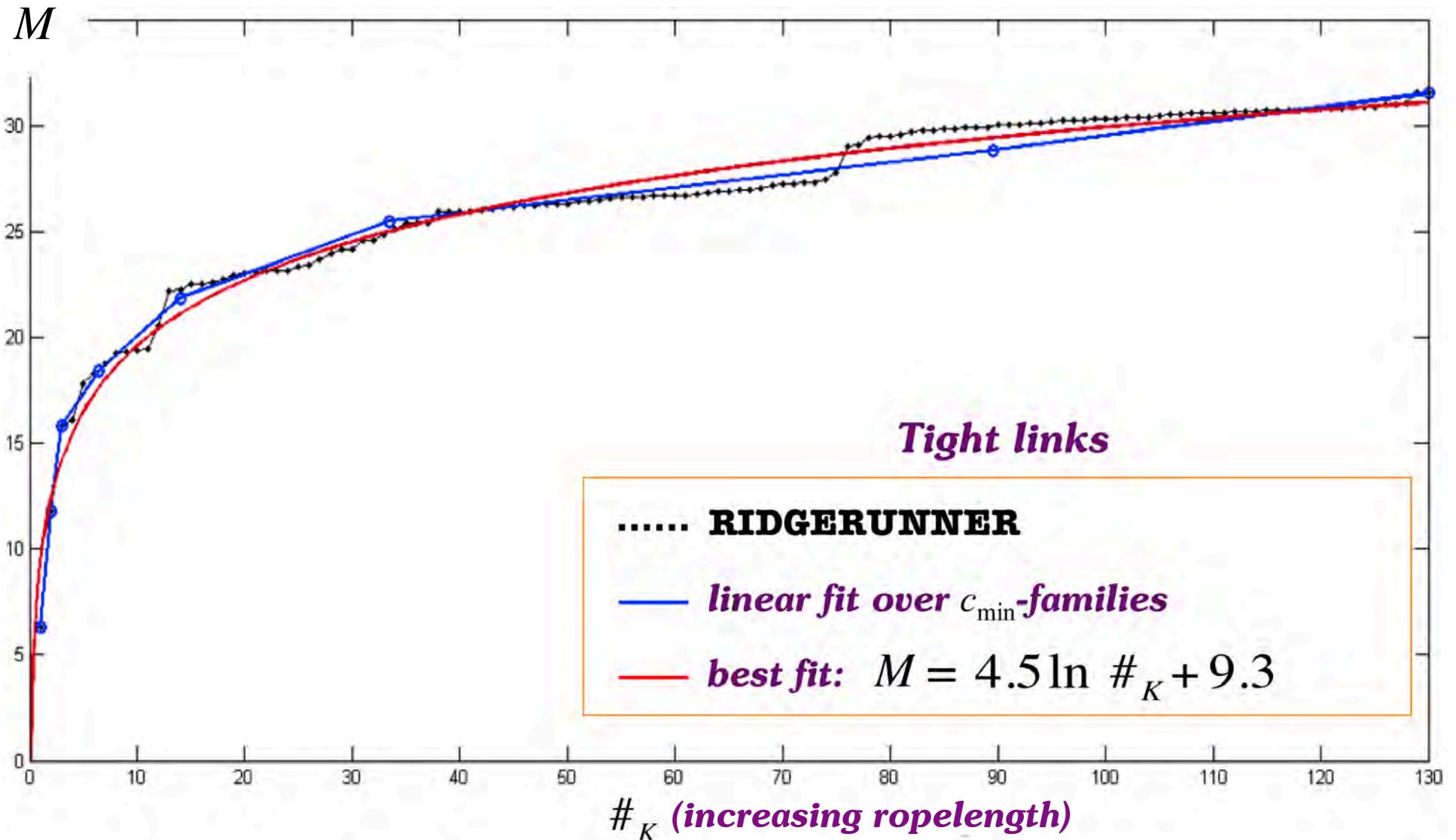
M = magnetic (elastic) energy (in non-dimensional units)



(Ricca & Maggioni, *J Phys A* 2014)

Tight knots and groundstate energy spectrum

M = magnetic (elastic) energy (in non-dimensional units)



(Ricca & Maggioni, *J Phys A* 2014)

Knot visualization, calculator and software explorer

Visualization, exploration and experimentation:

KNOTPLOT by Robert Scharein

<http://knotplot.com/>

- Visualize and manipulate knots in three and four dimensions.

The KnotPlot Site

Welcome to the KnotPlot Site!

Here you will find a collection of knots and links, viewed from a (mostly) mathematical perspective. Nearly all of the images here were created with KnotPlot, an elaborate program to visualize and manipulate [mathematical knots](#) in three and four dimensions.

[DOWNLOAD KNOTPLOT FOR WINDOWS, MACOSX AND LINUX](#)

Knot Pictures

Check out the [mathematical knots \(M\)](#) page as well to see more knot pictures. Or try some of the following examples to see some knots in a different light. The pages marked with have been updated or created as of May 2006. Those marked with an **M** have at least one MPEG animation.

Various Picture Galleries

- [Knots as radiating tubes](#)
- [More knots as radiating tubes](#)
- [Decorative knots: on white, on black, goth](#)
- [Astrology Necklace](#) (a fractal link)
- [Möbius pictures](#) — not knot like, but still rendered with KnotPlot
- [Ashley knots](#)
- [Nifty Knots with Fancy Lighting](#)
- [A knot zoo](#)
- [Torus knots and links](#), arranged by crossing number
- [Borromean rings](#)
- [Linking Spheres in three or more dimensions](#)
- [PDF and PostScript examples](#)
- [Knot Carpets](#)
- [3D Stereoscopic Pictures](#) ([page 1](#), [page 2](#), [page 3](#), [page 4](#), [page 5](#), [page 6](#))
- [Celtic Knots](#)
- [Hyperbolic Knots](#)
- [Complex knots](#)
- [Interactive knot viewer](#) (randomly chosen knot, requires Java): [smooth knots](#) [minimal-stick knots](#) [equilateral minimal-stick knots](#) [crazy knots](#).
- [VRML Models](#)
- [3D Surface Models](#)
- [Perko pair knots](#)
- [Hemp strip knots](#)
- [Conway](#)
- [Project Aum](#)
- [Stick numbers for minimal stick knots](#) (data only, no pictures)
- Some excellent [references](#) on knot theory.
- Some favorite figures from my thesis (PDF and PostScript)
- [Symmetric projections of minimal-stick knots](#)
- [Links to other peoples' knot sites](#)
- The [KnotServer](#) (experimental, still not too useful), 3D interactive viewer (which can save 3D models).

Help keep the KnotPlot Project alive! Click on the button below to make a donation.
[Donate](#)

Use your credit card or PayPal account (PayPal account not needed).

Knot visualization, calculator and software explorer

Visualization, exploration and experimentation:

KNOTPLOT by Robert Scharein

<http://knotplot.com/>

- Visualize and manipulate knots in three and four dimensions.

The KnotPlot Site

DOWNLOAD KNOTPLOT FOR WINDOWS, MACOSX AND LINUX

Welcome to the KnotPlot Site!

Here you will find a collection of knots and links, viewed from a (mostly) mathematical perspective. Nearly all of the images here were created with KnotPlot, an elaborate program to visualize and manipulate mathematical knots in three and four dimensions.

Check out the [mathematical knots \(M\)](#) page as well to see more knot pictures. Or try some of the following examples to see some knots in a different light. The pages marked with have been generated by KnotPlot.

Various Picture Galleries

- Knots as radiating tubes [More knots as radiating tubes](#)
- Decorative knots: on white, on black, gath
- Asteroid Necklace (a fractal link)
- M鯾e pictures — not knot like, but still rendered with KnotPlot
- Ashley knots
- Nifty Knots with Fancy Lighting
- A knot zoo
- Torus knots and links, arranged by crossing number
- Brunnian Links
- Linking Spheres in three or more dimensions
- PDF and PostScript examples
- Knot Carpets
- 3D Stereoscopic Pictures ([page 1](#), [page 2](#), [page 3](#), [page 4](#), [page 5](#), [page 6](#))
- Celtic Knots
- Hyperbolic Knots
- Complex knots
- Interactive knot viewer (randomly chosen knot, requires Java): [smooth knots](#) [minimal-stick knots](#) [equilateral minimal-stick knots](#) [crazy knots](#).
- VRML Models
- 3D Surface Models
- Perko pair knots
- Helix strip knots
- Coney
- Project Aum
- Stick numbers for minimal stick knots (data only, no pictures)
- Some excellent [references](#) on knot theory.
- Some favorite figures from my thesis (PDF and PostScript)
- Symmetric projections of minimal-stick knots
- Links to other peoples' knot sites
- The [KnotServer](#) (experimental, still not too useful), 3D interactive viewer (which can save 3D models).

KnotPlot (Scharein, 1998-2011)

- ***Database:***

- Knot catalogue of first 384 knots and links (knots up to 10 crossings, links up to 4 components and 9 crossings);***
 - Geometric and topological properties such as average crossing number, writhe, ropelength, linking number, bridge number, DT code, Alexander and HOMFLYPT polynomial;***

KnotPlot (Scharein, 1998-2011)

- **Database:**

- *Knot catalogue of first 384 knots and links (knots up to 10 crossings, links up to 4 components and 9 crossings);*
 - *Geometric and topological properties such as average crossing number, writhe, ropelength, linking number, bridge number, DT code, Alexander and HOMFLYPT polynomial;*

- **Knot visualization:**

- *From polygonal curves to ideal knot shapes rendering;*
 - *Knot coordinates, Euler angles, lattice models;*

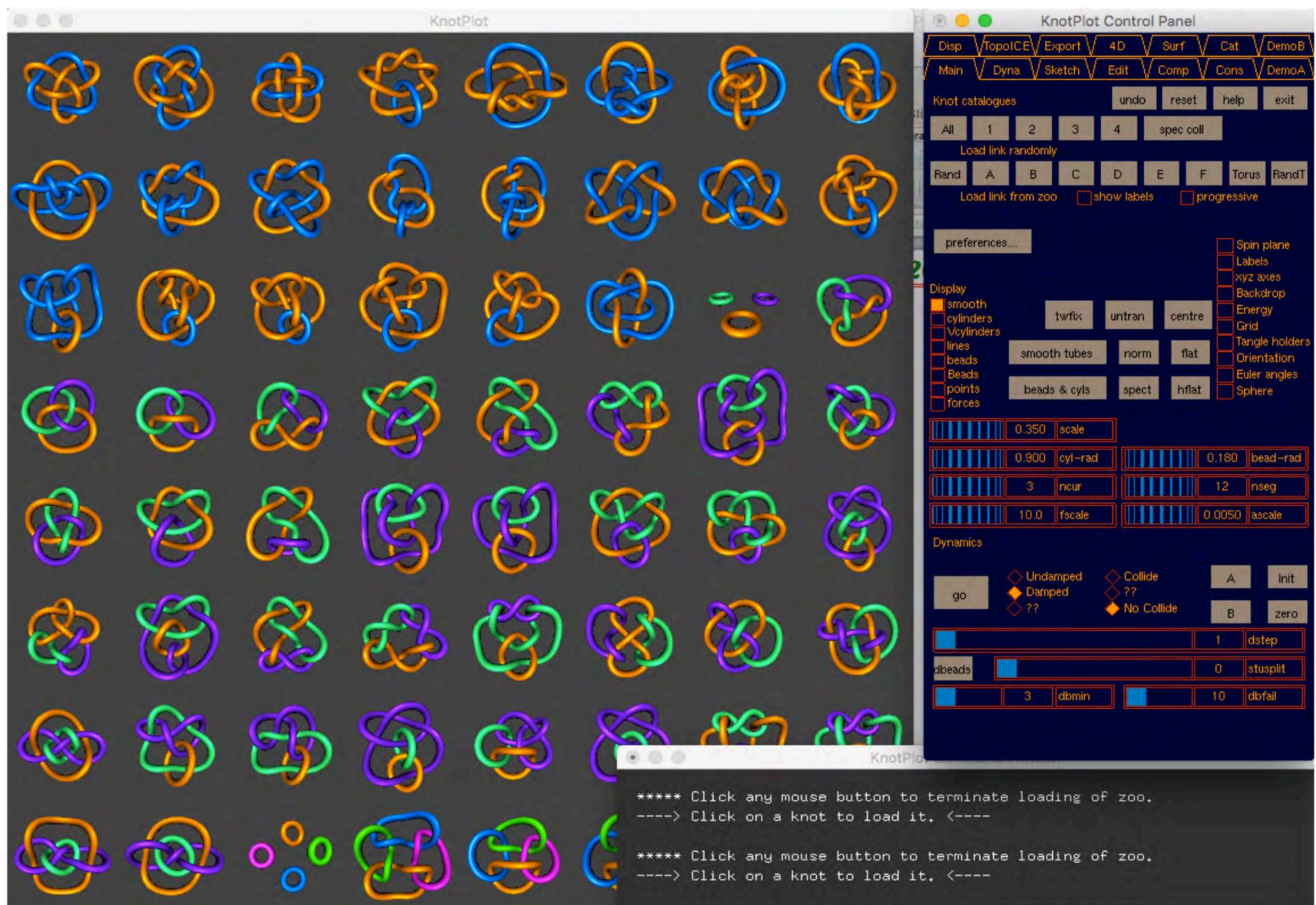
KnotPlot (Scharein, 1998-2011)

- **Database:**
 - *Knot catalogue of first 384 knots and links (knots up to 10 crossings, links up to 4 components and 9 crossings);*
 - *Geometric and topological properties such as average crossing number, writhe, ropelength, linking number, bridge number, DT code, Alexander and HOMFLYPT polynomial;*
- **Knot visualization:**
 - *From polygonal curves to ideal knot shapes rendering;*
 - *Knot coordinates, Euler angles, lattice models;*
- **Knot construction:**
 - *Automatic constructions by Conway's tangles of chains and Lissajous knots;*
 - *3D sketching of knots, braids, chains;*
 - *Transformations of known knots into new knots by local and global mutations;*

KnotPlot (Scharein, 1998-2011)

- **Database:**
 - *Knot catalogue of first 384 knots and links (knots up to 10 crossings, links up to 4 components and 9 crossings);*
 - *Geometric and topological properties such as average crossing number, writhe, ropelength, linking number, bridge number, DT code, Alexander and HOMFLYPT polynomial;*
- **Knot visualization:**
 - *From polygonal curves to ideal knot shapes rendering;*
 - *Knot coordinates, Euler angles, lattice models;*
- **Knot construction:**
 - *Automatic constructions by Conway's tangles of chains and Lissajous knots;*
 - *3D sketching of knots, braids, chains;*
 - *Transformations of known knots into new knots by local and global mutations;*
- **Knot dynamics:**
 - *Energy relaxation by applied forces;*
 - *Interactive manipulation of knots by local and global actions.*

KnotPlot (Scharein, 1998-2011)



Selected references

Books:

An elementary mathematical introduction:

- Adams, C.C. 1994 *The Knot Book*. W.H. Freeman & Co., New York.

A comprehensive, non-mathematical collection:

- Ashley, C. 1944 *The Ashley Book of Knots*. Doubleday, New York.

An overall view of modern developments:

- Kauffman, L.H. 2001 *Knots and Physics*. World Scientific, Singapore.

A rigorous introduction without mathematics:

- Sossinsky, A. 2002 *Knots - Mathematics with a Twist*. Harvard U. Press, Cambridge.

Selected references

Books:

An elementary mathematical introduction:

- Adams, C.C. 1994 *The Knot Book*. W.H. Freeman & Co., New York.

A comprehensive, non-mathematical collection:

- Ashley, C. 1944 *The Ashley Book of Knots*. Doubleday, New York.

An overall view of modern developments:

- Kauffman, L.H. 2001 *Knots and Physics*. World Scientific, Singapore.

A rigorous introduction without mathematics:

- Sossinsky, A. 2002 *Knots - Mathematics with a Twist*. Harvard U. Press, Cambridge.

Online resources:

- KnotAtlas: katlas.math.toronto.edu/wiki
- KnotInfo: indiana.edu/~knotinfo
- KnotFinder: indiana.edu/~knotinfo/knotfinder.php
- KnotPlot: knotplot.com
- KnotScape: pzacad.pitzer.edu/~jhoste/HosteWebPages/kntscp.html
- LinKnot: www.mi.sanu.ac.rs/vismath/linknot/index.html

End of Course