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Lecture 1

An intuitive approach:
- Knots in art and science: from arts and crafts to DNA biology

- Knots in mathematics: theorems, numerics and platonic figures

A little bit of history:
- Origin of knot theory: Kelvin’s string theory and Tait’s tabulation

The key concept:

- Topological equivalence and invariants: playing with continuity

Let’s get serious:

- Elements of knot theory: classification issues and basic definitions
- Gauss linking number: from definition to application

- Minimal crossing number and minimal diagram

- Tait’s tabulation re-visited: a source of inspiration

- Reidemeister’s moves to encode topological equivalence



Knots in arts & crafts

Funeral Celtic stone



Knots in arts & crafts

Church of S. Croce (Florence): detail



Knots in arts & crafts

Pictorial representation of psyche



Knots in manifactures

Woven ropes of jute



Knots in manifactures

Loop of rope



Knots in manifactures

Chinese ornament



Knots in nature

Knotted grapevine



Knots in nature

Knotting of hagfish (Missinoide)



Knots in nature

Knotted DNA (Dean et al., 1985)



Knots in technology

Linkage of crystal structures (Matsuura et al., 2006)



Knots in technology

Phase defects in optics (Dennis et al, 2010)



Knots in physical theory

Solitons in field theory (Sutcliffe, 2007)



Knots in mathematics

Trefoil knot



Knots in mathematics

Polygonal knot of struts in computer simulation



Knots in mathematics

Knot in a cubic lattice



Knots in mathematics

Plato’s ideal trefoil knot



Knot table by KnotPlot




Knots in the vortex atom theory

Lord Kelvin (1870)



Knot tabulation

P.G. Tait (1870)
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Knot tabulation

P.G. Tait (1870)



First equations

Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie @, y, z;
der zweiten #, y, z und

ff ('—2z)(dyde—dzdy’ )+ (y'—y)(dzdz’'—dzdz") 4 (z2—2') (dzdy'—dydz’) —V
[@—2) +(y—y)* + 2

dann ist dies Integral durch beide Linien ausgedehnt
= 4mm

und m die Anzahl der Umschlingungen.
Der Werth ist gegenseitig, d. i. er bleibt derselbe, wenn beide Linien ge-
gen einander umgetanscht werden. 1833. Jan. 22.

K.F. Gauss (1833)
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dann ist dies Integral durch beide Linien ausgedehnt
= 4mm

und m die Anzahl der Umschlingungen.
Der Werth ist gegenseitig, d. i. er bleibt derselbe, wenn beide Linien ge-
gen einander umgetanscht werden. 1833. Jan. 22.

K.F. Gauss (1833)

J.C. Maxwell (1867)



The concept of topological equivalence and invariants




The concept of topological equivalence and invariants

e Re-arrangement of internal structure



The concept of topological equivalence and invariants

e Re-arrangement of internal structure



The concept of topological equivalence and invariants

e Re-arrangement of internal structure



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel

e Knotted pretzel



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel

e Knotted pretzel



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel

e Knotted pretzel



The concept of topological equivalence and invariants

e Re-arrangement of internal structure

e Linked pretzel
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What to study on knots?

e Minimum number of crossings: C_. = 3

Trefoil knot
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What to study on links?

e Number of components: [N

e Minimum number of crossings: C_. = min(#)

|
e (Gauss) linking number between components: [k = —28
2 r

> a0 T
v4

e = =1 +

N=4,c =0, Lk=0 N=2, ¢ =2 Lk=+1
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Indented diagram and signed crossings
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Indented diagram and signed crossings

f/@ o P

minimal diagram!
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Minimal diagrams and topological invariants
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generic projection minimal projection

N=2, Lk,=+2,C=10 N=2, Lk,=+2,C=c_ =4

min

e From generic diagrams: minimal diagram presentation;

e From number of components N : topological linking number Lk12 ;



Minimal diagrams and topological invariants

generic projection minimal projection

N=2, Lk,=+2,C=10 N=2, Lk,=+2,C=c_=4
e From generic diagrams: minimal diagram presentation;
e From number of components N : topological linking number Lk12 ;

e From number of crossings C: topological crossing number C_. .
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Reidemeister’s moves

e Type I:

o Type II:

e Type III:



A remark: topology versus mechanics

e Type I: Q
-
Q
~ S
@
3
Tvpe II:
o IVp \
&
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e Type III: 8
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&




Reidemeister’s theorem

“Two knots/links are topologically equivalent - i.e. they represent
the same knot/link type - if one can be transformed into the other

bv a finite sequence of Reidemeister’s moves.”

o Example:



Reidemeister’s moves in action
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Reidemeister’s moves in action

I II I
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Reidemeister’s moves in action (cont.)
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Reidemeister’s moves in action (cont.)
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Reidemeister’s moves in action (cont.)

II

hence

We have proved that



End of Lecture 1



Lecture 2

e When topology meets geometry:
- Self-linking of a ribbon = Writhe + Twist
- Compactification, relaxation and DNA topology

e From knots to braid presentations:
- bridge index and closed braids
- braid index and Seifert surfaces

- Plasma loops on the Sun

e The polyvnomial era:
- From Alexander to Jones and modern times
- Jones’ skein relations for knot polynomials

- Examples of computation

e Topics of current research:

- Vortex dvnamics: HOMFLYPT best quantifier of topological complexity
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From Gauss linking number to self-linking number
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e Ribbon construction:
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Self-linking number (Calugareanu-White invariant)

e Self-linking (number):

SL =Wr+Tw

e Writhe (writhing number):

Wr=Wr(C)
e Twist (total twist number): e
Tw = Tw (R) <
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Properties of SL , Wr, and Tw

e Linking number SL = SL (R) :
(i) SL (R) is a topological invariant of the ribbon;
(ii) it is an integer;

(iii) under cross-switching (F — L ): ASL==+2 .

o Writhing number Wr = Wr (C) :

(i) Wr (C) is a geometric measure of the curve C ;
(ii) it is a conformational invariant;

(iii) under cross-switching (I — +): ASL=+2.

e Total twist number Tw = Tw (R ) :
(i) Tw (‘R ) is a geometric measure of the ribbon R (C, C*) ;

(ii) it is a conformational invarant;

(iii) it is additive: Tw (4) + Tw (B)=Tw (4 +B) .



Zero-framing

SL=Wr+Tw =0

Wr = —-Tw




Zero-framing

e Zero-framed trefoil:

Wr = -3
Tw=+3
SL=Wr+Tw =0

C"X

C\

SL=Wr+ITw =0 e

Wr = —-Tw




Interpretation of writhe in terms of signed crossings

Crossing sign convention again:

e %)
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Interpretation of writhe in terms of signed crossings

Crossing sign convention again:

e %)

\4

. \oFO

Wr = -3 Wr=+3 Wr=+1




A simple example

Wr =-0
Tw= -1
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A simple example

Wr =-0
Tw= -1
SL= -1
Wr = -1
Tw= -0

SL = -1
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First remark: compactification in space
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First remark: compactification in space

initial configuration:

SL=Tw, Wr=0

number of initial coils
number of final coils

type of transitional states
writhing rates and energetics final configuration




DNA is crowded in the cell




Second remark: relaxation of elastic energy

e Supercoiling as transition from Tw to Wr, under conservation of SL :
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Second remark: relaxation of elastic energy

e Supercoiling as transition from Tw to Wr, under conservation of SL :

(i) keep straight and twist,

(ii) pull tight,

(iii) let schrink,

(iv) ... and schrink,

(v) ... and schrink again!

Energy

<4— min



Linear, relaxed and supercoiled DNA
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From knots to braids

e Bridge index (invariant) b(K): minimal
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in all the possible bridge representation
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From knots to braids

e Bridge index (invariant) b(K): minimal (L
number of bridges (“maxima”) required -
in all the possible bridge representation (L
of the knot.
b(F8) =3 N

e Figure-of-8 in braid presentation:

BF®) =3

o Braid index (invariant) f(K): minimal number of strings in braid form.

b(K)=B(K)
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K =7
cmin(K) =7
Wr(K) =7

/3(1() =9



Some exercises!

ca(K) -2
wr(K) =7
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Creating a Seifert surface (orientable spanning surface)
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Creating a Seifert surface (orientable spanning surface)

1.
F?
2 3.
4. S

B (K) = minimum number of Seifert circles in any projection of a knot.



Examples of Seifert surfaces
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Examples of Seifert surfaces

() (b)

non-orientable
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The polynomial era

P( )=a’+2a'-5-2a+3a’

1970: Conway, ...

1930: Alexander, ...

1990: Jones, ...

1980: Kauffman, ...
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The Jones polynomial V ( K)

e An example: V(K) = f(‘L')

V( )= VIF )= 17 -1 +1-1+7

e Skein relations:

v V(0) =1

v.2) V(\) 2V(\)+(T%—T%)V()(‘)

-+ _— _—

V(K) :

v ()= - V(0)=V(r)=V(r) =1

unknot Y, Y._



The Jones polynomial V ( K)

o An example:
/|

e Skein relations:

(V.1)
V(K) :
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unknot
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o An example:
/|

e Skein relations:

(V.1)
V(K) :
(V.2)
unknot
V.2:
Y.

V(0O) =1

V

(

V(K)= f(7)

) = V(F) =17 -1t +1-7+7

w
N
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The Jones polynomial V ( K)

o An example:
/|

e Skein relations:

(V.1)
V(K) :
(V.2)

unknot

V.2:

V(0O) =1
v (X) -
V.

V(K)= f(7)

) = V(F) =17 -1t +1-7+7

2% (\) +(r3 — 73V ()(‘)
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e Hopf link H_:
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5
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Jones distinguishes mirror knots

Left trefoil Right trefoil

Vviryy=+'+v>-1t" Vir®h =t+7 -1

Whitead link

7 5 3 1 1 3
VW)=1?*-21°+1°-2T1 > +1% -1
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Scharein (KnotPlot)
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Production of a vortex trefoil knot in water (Kleckner & Irvine, 2013)

»
b Y
T(223) T(2,2)
_____ _> S —
r=1 t=2
A
N
4
T(2.1) T(2,0
_____ _> __> ce e



Production of a vortex link in BECs (Zuccher & Ricca, submitted)




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

»




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

»




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

)

N

»




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

»




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

»
A4 v
T(22) T(2.,1)
_____ > o
t=1 r=2

A

A
T (2.0)
————— >




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

»
v 4
T(22) T(2,1)
_____ > o
t=1 r=2

A

'
T(2,0)
————— —




Production of a vortex link in BECs (Zuccher & Ricca, submitted)

»
v 4
T((22) T(2,1)
_____ _> S —
t=1 t=2
A
A 4

A > 7
T (2,0) T (3,0)
————— > ——>
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Ideal torus knots & links cascade

Consider the cascade process:

(i)

(ii)

{T(Z,n)}: . > TQ2,2n+1) - TR2,n) — ... = T(2,0) .

Assumptions:

e all torus knots T (2,2n+1) and links T (2,2n) are standardly embedded
on a mathematical torus in closed braid form;

o all torus knots and links form an ordered set {T(2,n)} of elements
listed according to their decreasing value of topological complexity
givenby c_.=n;

e any topological transition between two contiguous elements of «{T(Z,n)}
is determined by a single, orientation-preserving reconnection event.
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e Similar cascade process in E-coli DNA replication:

(Shimokawa et al., 2013)
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HOMEFLYPT is the best quantifier of topological complexity

Liu & Ricca
(Nature Sci. Reports, 2016)

e Optimal path to cascade?

PT(z,ﬁ) =3.13



End of Lecture 2



Laboratory

e From Gauss coding to modern tabulation:
- Alexander-Briggs notation
- Braid words, Gauss and Dowker-Thistlethwaite code
- Jones polynomial

- Ropelength, tight knots and ideal shapes

e KnotAtlas (Bar Natan, 2000, 2004):

- online database of knots and invariants

e LinKnot (Jablan-Razdanovic, 2006):

- online knot theory software

e KnotPlot (Scharein, 2011):

- visualization and mathematical exploration software
- tangle calculator
- dvnamical systems interface

- mathematical experimentation



Topological crossing number and knot types

Cmin # of knot types
0 1
1 0
2 0
3 1
4 1
5 2
6 3
7 7
8 21
9 49
10 165
11 002
12 2176
13 9988
14 46,972
15 253,293
16 1,388,705




The standard table of knots (Reidemeister, Knotetheorie, 1932)
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Alexander-Briggs notation (knot/link type)
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Braid words

Hopf link:

Trefoil knot:

F 8 knot:

braid

word

1 -1 -1
O " 07 0
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Hopf link: ~ ~ oo

Trefoil knot: ~ ~ v o oo
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Braid words braid

word
v
Hopf link: ~ ~ oo
v
o O
v
Trefoil knot: ~ ~ v o oo
v
o] O,
v
F 8 knot: ~ ~ v 0, 0,1 0,0,7!
<4
v

O O, O3
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A,-B,C,-A,B,-C.

e Rule: »

i) fix an origin on the knot,

@

(not on a crossing site);

ii) orient the knot;

iii) assign a letter (or a number) to each crossing site
in alphabetical order according to orientation;

iv) list all the signed letters in sequence all the way around the knot,
positive for an overpass, negative for an undrepass;



Gauss code: an example

Gauss code: {A-BC-AB-C}

e Rule: »

i) fix an origin on the knot,

@

(not on a crossing site);

ii) orient the knot;

iii) assign a letter (or a number) to each crossing site
in alphabetical order according to orientation;

iv) list all the signed letters in sequence all the way around the knot,
positive for an overpass, negative for an undrepass;

v) the set of ordered sequence is the Gauss code.
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DT (Dowker-Thistlethwaite) code: an example v
4
;| A
®
5 2
>
e Rule: '
i) fix an origin on the knot, < >6
(not on a crossing site); 3

ii) orient the knot;
iii) assign a number to each crossing site
in increasing order according to orientation, all around the knot;



DT (Dowker-Thistlethwaite) code: an example v
4
{123456; 1 A
@
5 2
>
e Rule: '
i) fix an origin on the knot, < >6
(not on a crossing site); 3

ii) orient the knot;
iii) assign a number to each crossing site

in increasing order according to orientation, all around the knot;
iv) list the sequence of numbers by assigning a negative sign to even

overpasses,



DT (Dowker-Thistlethwaite) code: an example

1 35
{123456}-*{462} 1
@

5 2
| 2

e Rule: '

i) fix an origin on the knot, »6

L v
(not on a crossing site); 3

ii) orient the knot;

iii) assign a number to each crossing site
in increasing order according to orientation, all around the knot;

iv) list the sequence of numbers by assigning a negative sign to even
overpasses;

iv) starting from the odd numbers group odd and even numbers
assigned to each crossing in separate ordered sequences, by
placing the odd sequence above the even sequence;



DT (Dowker-Thistlethwaite) code: an example

1 35
{123456}-*{462} 1
l @
DT code: [4 6 2] 5} 2
e Rule: '
i) fix an origin on the knot, v »6
(not on a crossing site); 3

ii) orient the knot;

iii) assign a number to each crossing site
in increasing order according to orientation, all around the knot;

iv) list the sequence of numbers by assigning a negative sign to even
overpasses;

iv) starting from the odd numbers group odd and even numbers
assigned to each crossing in separate ordered sequences, by
placing the odd sequence above the even sequence;

v) the set of even sequence represents the DT code.
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DT (Dowker-Thistlethwaite) code: a worked-out example

e Remark: mirror knots have same DT code

{123456789 10 11 12}

1 357 9 11
6 -12 2 8 4 -10

DT code:
[6 —12 2 8 —4 —10]




Exercise: determine the DT code of this knot




Exercise: determine the DT code of this knot




Exercise: determine the DT code of this knot




Exercise: determine the DT code of this knot

DT code: [14 12 10 2 18 16 8 6 4]



... and what about these?

(a) (b)
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Jones polynomial V ( K )

e Skein relations:

v.1) V(0) =1
V(K) :
(V.2)

e Left-handed trefoil knot T~ :

V(TY) =771 4773 774

e Figure-of-eight knot F8 :

TL

F8

unknot

unknot
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Jones polynomials of first knots

By replacing T (dummy variable) by f, we have:

Knot type

Jones polynomial

Code

—

(4} (-1+10+1)
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Jones polynomials of first knots

By replacing T (dummy variable) by f, we have:

Knot type Jones polynomial Code

. [Al(=1+10+D)
—s {2}+1-1+1-1+1)

—
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Alexander-Briggs notation (up to 10 crossings)

__-~ # of link components

- AN
- \

- \

- \

- \

-~ - /—\
\N_7



Alexander-Briggs notation (up to 10 crossings)

# of link components

Alexander-Briggs notation up to
10 crossings; then DT code of
type “Kc_ .. al23” or “Kc . n123”
in lexicographical order



Online databases - 1

Data bases of knots and invariants:



Online databases - 2

Data bases of knots and invariants:
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knot tightening



Knot tightening software

7 TSa p R S = x

>

-
knot tightening link tightening



Knot tightening software
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Knot tightening software

4 TR A " ey
-
-
knot tightening link tightening
Lmin L L

e Ropelength: )\ =

Rmax  R*



Tight knots and groundstate energy spectrum

M = magnetic/elastic energy (in non-dimensional units)



Tight knots and groundstate energy spectrum

M = magnetic (elastic) energy (in non-dimensional units)

M

(Alexander-Briggs tabulation)
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Tight knots and groundstate energy spectrum

M = magnetic (elastic) energy (in non-dimensional units)

M

(increasing ropelength)

(Ricca & Maggioni, J Phys A 2014)
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KnotPlot (Scharein, 1998-2011)

e Database:
- Knot catalogue of first 384 knots and links (knots up to 10 crossings, links
up to 4 components and 9 crossings);
- Geometric and topological properties such as average crossing number,
writhe, ropelength, linking number, bridge number, DT code, Alexander and
HOMFLYPT polynomial;
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- 3D sketching of knots, braids, chains;

- Transformations of known knots into new knots by local and global mutations;



KnotPlot (Scharein, 1998-2011)

e Database:

- Knot catalogue of first 384 knots and links (knots up to 10 crossings, links
up to 4 components and 9 crossings);

- Geometric and topological properties such as average crossing number,
writhe, ropelength, linking number, bridge number, DT code, Alexander and
HOMFLYPT polynomial;

e Knot visualization:
- From polygonal curves to ideal knot shapes rendering;
- Knot coordinates, Euler angles, lattice models;

e Knot construction:

- Automatic constructions by Conway’s tangles of chains and Lissajous knots;

- 3D sketching of knots, braids, chains;

- Transformations of known knots into new knots by local and global mutations;

e Knot dynamics:
- Energy relaxation by applied forces;

- Interactive manipulation of knots by local and global actions.



KnotPlot (Scharein, 1998-2011)




Selected references

Books:

An elementary mathematical introduction:

- Adams, C.C. 1994 The Knot Book. W.H. Freeman & Co., New York.
A comprehensive, non-mathematical collection:

- Ashley, C. 1944 The Ashlev Book of Knots. Doubleday, New York.
An overall view of modern developments:

- Kauffman, L.H. 2001 Knots and Physics. World Scientific, Singapore.
A rigorous introduction without mathematics:

- Sossinsky, A. 2002 Knots - Mathematics with a Twist. Harvard U. Press,
Cambridge.
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Books:

An elementary mathematical introduction:

- Adams, C.C. 1994 The Knot Book. W.H. Freeman & Co., New York.

A comprehensive, non-mathematical collection:

- Ashley, C. 1944 The Ashlev Book of Knots. Doubleday, New York.

An overall view of modern developments:

- Kauffman, L.H. 2001 Knots and Physics. World Scientific, Singapore.

A rigorous introduction without mathematics:

- Sossinsky, A. 2002 Knots - Mathematics with a Twist. Harvard U. Press,
Cambridge.

Online resources:

- KnotAtlas: katlas.math.toronto.edu/wiki

- Knotinfo: indiana.edu/~knotinfo

- KnotFinder: indiana.edu/~knotinfo/knotfinder.php

- KnotPlot: knotplot.com

- KnotScape: pzacad.pitzer.edu/~jhoste/HosteWebPages/kntscp.html
- LinKnot: www.mi.sanu.ac.rs/vismath/linknot/index.html
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