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�  An intuitive approach: 

   - Knots in art and science: from arts and crafts to DNA biology

   - Knots in mathematics: theorems, numerics and platonic figures
�

�  A little bit of history: 

   - Origin of knot theory: Kelvin’s string theory and Tait’s tabulation
�

�  The key concept: 

   - Topological equivalence and invariants: playing with continuity
�

�  Let’s get serious: 

   - Elements of knot theory: classification issues and basic definitions

   - Gauss linking number: from definition to application

   - Minimal crossing number and minimal diagram

   - Tait’s tabulation re-visited: a source of inspiration 

   - Reidemeister’s moves to encode topological equivalence

Lecture 1
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Knotted DNA (Dean et al., 1985)

Knots in nature



Linkage of crystal structures (Matsuura et al., 2006)

Knots in technology



Phase defects in optics (Dennis et al, 2010) 

Knots in technology



Solitons in field theory (Sutcliffe, 2007)

Knots in physical theory



Trefoil knot

Knots in mathematics



Polygonal knot of struts in computer simulation

Knots in mathematics



Knot in a cubic lattice

Knots in mathematics



Plato’s ideal trefoil knot

Knots in mathematics



Knot table by KnotPlot



Lord Kelvin (1870)

Knots in the vortex atom theory
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First equations
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cmin = min(#) �  Minimum number of crossings:

�  Number of components: N

N  = 4    cmin = 0    Lk  = 0 N  = 2    cmin = 2    Lk  = +1,              ,                                             ,               ,

�  (Gauss) linking number between components:

εr  = ±1 

Lk  = 1
2

εr
r
∑

         

What to study on links?



Computations by hand: some examples



Computations by hand: some examples



Computations by hand: some examples



Computations by hand: some examples



Indented diagram and signed crossings

~ ~ 



~ ~ 

Indented diagram and signed crossings



ν

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 

Indented diagram and signed crossings



ν

+1 –1

~ ~ 
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minimal diagram!



Minimal diagrams and topological invariants

generic projection                                 minimal projection

N  = 2   C  = cmin = 4   Lk12 = + 2 



Minimal diagrams and topological invariants

generic projection

N  = 2    Lk12 = + 2   C  = 10,                   ,                                                               



Minimal diagrams and topological invariants

~
generic projection                                 minimal projection

N  = 2    Lk12 = + 2   C  = 10,                   ,                                           ,                   , N  = 2    Lk12 = + 2   C  = cmin = 4



Minimal diagrams and topological invariants

~
generic projection                                 minimal projection

N  = 2    Lk12 = + 2   C  = 10,                   ,                                           ,                   , N  = 2    Lk12 = + 2   C  = cmin = 4



Minimal diagrams and topological invariants

~
generic projection                                 minimal projection

N  = 2    Lk12 = + 2   C  = 10,                   ,                                           ,                   , N  = 2    Lk12 = + 2   C  = cmin = 4



Minimal diagrams and topological invariants

~
generic projection                                 minimal projection

�  From generic diagrams: minimal diagram presentation; 

N  = 2    Lk12 = + 2   C  = 10,                   ,                                           ,                   , N  = 2    Lk12 = + 2   C  = cmin = 4



Minimal diagrams and topological invariants

~
generic projection                                 minimal projection

�  From number of components     : topological linking number         ; N Lk12

�  From generic diagrams: minimal diagram presentation; 

N  = 2    Lk12 = + 2   C  = 10,                   ,                                           ,                   , N  = 2    Lk12 = + 2   C  = cmin = 4



Minimal diagrams and topological invariants

~
generic projection                                 minimal projection

�  From number of components     : topological linking number         ; N Lk12

�  From generic diagrams: minimal diagram presentation; 

�  From number of crossings     : topological crossing number        .C cmin

N  = 2    Lk12 = + 2   C  = 10,                   ,                                           ,                   , N  = 2    Lk12 = + 2   C  = cmin = 4
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First results from Tait’s tabulation
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Reidemeister’s theorem

“Two knots/links are topologically equivalent – i.e. they represent 
the same knot/link type – if one can be transformed into the other 
by a finite sequence of Reidemeister’s moves.” 

                              ~                              

�  Example:
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Reidemeister’s moves in action (cont.)

We have proved  that

~                              
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hence



End of Lecture 1



�  When topology meets geometry: 

   - Self-linking of a ribbon = Writhe + Twist

   - Compactification, relaxation and DNA topology

�  From knots to braid presentations:

   - bridge index and closed braids

   - braid index and Seifert surfaces

   - Plasma loops on the Sun
�

�  The polynomial era: 

   - From Alexander to Jones and modern times

   - Jones’ skein relations for knot polynomials

   - Examples of computation

�  Topics of current research:

   - Vortex dynamics: HOMFLYPT best quantifier of topological complexity

Lecture 2
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�  Ribbon construction:
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Self-linking number (Călugăreanu-White invariant)

�  Writhe (writhing number):

�  Twist (total twist number):

SL = Wr +Tw

�  Self-linking (number):

Wr = Wr (C )

Tw = Tw (R )
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Properties of  SL , Wr , and  Tw 

�  Linking number SL = SL (R ) :

�  Writhing number Wr = Wr (C ) :

�  Total twist number Tw = Tw (R ) :

(i) SL (R ) is a topological invariant of the ribbon;

(ii) it is an integer;

(iii) under cross-switching (              ): ∆SL = ± 2 .

(i) Wr (C ) is a geometric measure of the curve C  ;
(ii) it is a conformational invariant;

(iii) under cross-switching (              ): ∆SL = ± 2 . 

(i) Tw (R ) is a geometric measure of the ribbon R (C , C* ) ;
(ii) it is a conformational invarant;

(iii) it is additive: Tw (A )  + Tw (B ) = Tw (A +B) . 
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�  Zero-framed trefoil:

Wr  = −3
Tw = +3
SL  = Wr +Tw = 0

C

C *

Zero-framing

SL = Wr +Tw = 0 Wr  = −Tw⇔
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First remark: compactification in space 

initial configuration:

final configuration

�  number of initial coils
�  number of final coils
�  type of transitional states
�  writhing rates and energetics

SL = Tw,  Wr  = 0



DNA is crowded in the cell
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(i) keep straight and twist,

(ii) pull tight,

(iii) let schrink,

(iv) … and schrink,

(v) … and schrink again!

�  Supercoiling as transition from Tw to Wr, under conservation of SL :



Second remark: relaxation of elastic energy
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(i) keep straight and twist,

(ii) pull tight,

(iii) let schrink,

(iv) … and schrink,

(v) … and schrink again!

�  Supercoiling as transition from Tw to Wr, under conservation of SL :



Linear, relaxed and supercoiled DNA
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(e) (f) 

(g) (h) 
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Gel electrophoresis
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From knots to braids 

�  Figure-of-8 in braid presentation:

�  Bridge index (invariant) b (K): minimal 
  number of bridges (“maxima”) required 
  in all the possible bridge representation 
  of the knot.   

b (F8) = 3

�     Braid index (invariant) β (K): minimal number of strings in braid form.

~                   ~                     ~                      

β (F8) = 3

b K( ) ≤ β K( )
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Creating a Seifert surface (orientable spanning surface)

2. 3. 

4. 5. 

β  (K) = minimum number of Seifert circles in any projection of a knot.

1. F8 
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Jones distinguishes mirror knots

V (T L ) = τ −1 +τ −3 −τ −4 V (T R ) = τ +τ 3 −τ 4

Left trefoil                                                                              Right trefoil

V (W ) = τ
−

7
2 − 2τ

−
5
2 +τ

−
3
2 − 2τ

−
1
2 +τ

1
2 −τ

3
2

Whitead link 
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Scharein (KnotPlot)
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Production of a vortex link in BECs (Zuccher & Ricca, submitted)

t = 1



t = 1

T (2,2)

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



t = 2t = 1

T (2,2)

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



t = 2

T (2,1)

t = 1

T (2,2)T (2,2)

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



t = 2

t = 3

T (2,1)

t = 1

T (2,2)

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



t = 2

t = 3

T (2,0)

T (2,1)

t = 1

T (2,2)

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



t = 2

t = 4t = 3

T (2,0)

T (2,1)

t = 1

T (2,2)

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



t = 1 t = 2

t = 4t = 3

T (2,0)

T (2,2) T (2,1)

T (3,0)
…

Production of a vortex link in BECs (Zuccher & Ricca, submitted)



Ideal torus knots & links cascade

Consider the cascade process: 

... →  T (2, 2n+1) →  T (2,n) →  ... →  T (2, 0):                                                                          .

�    all torus knots T (2, 2n+1) and links T (2, 2n) are standardly embedded
   on a mathematical torus in closed braid form; 
�    all torus knots and links form and ordered set              of elements 
   listed according to their decreasing value of topological complexity 
   given by cmin= n ;
�    any topological transition between two contiguous elements of   
   is determined by a single, orientation-preserving reconnection event. 
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HOMFLYPT is the best quantifier of topological complexity



Liu & Ricca
(Nature Sci. Reports, 2016)

HOMFLYPT is the best quantifier of topological complexity



(Shimokawa et al., 2013)

�  Similar cascade process in E-coli DNA replication:

HOMFLYPT is the best quantifier of topological complexity

Liu & Ricca
(Nature Sci. Reports, 2016)
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�  Optimal path to cascade?  

T (2, 5)

Liu & Ricca
(Nature Sci. Reports, 2016)



End of Lecture 2



�  From Gauss coding to modern tabulation: 

   - Alexander-Briggs notation

   - Braid words, Gauss and Dowker-Thistlethwaite code

   - Jones polynomial

   - Ropelength, tight knots and ideal shapes
�

�  KnotAtlas (Bar Natan, 2000, 2004): 

   - online database of knots and invariants
�

�  LinKnot (Jablan-Razdanovic, 2006): 

   - online knot theory software
�

�  KnotPlot (Scharein, 2011): 

   - visualization and mathematical exploration software

   - tangle calculator

   - dynamical systems interface 

   - mathematical experimentation

Laboratory



Topological crossing number and knot types
cmin # of knot types
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A

B

C

�  Rule:

i)  fix an origin on the knot, 
(not on a crossing site);

ii) orient the knot;
iii)  assign a letter (or a number) to each crossing site

in alphabetical order according to orientation; 
iv)  list all the signed letters in sequence all the way around the knot, 

positive for an overpass, negative for an undrepass;

                     A, –B, C, –A, B, –C. 



Gauss code: an example

A

B

C

Gauss code:  {A –B C –A B –C} 

�  Rule:

i)  fix an origin on the knot, 
(not on a crossing site);

ii) orient the knot;
iii)  assign a letter (or a number) to each crossing site

in alphabetical order according to orientation; 
iv)  list all the signed letters in sequence all the way around the knot, 

positive for an overpass, negative for an undrepass;
v) the set of ordered sequence is the Gauss code.
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�  Rule:

i)  fix an origin on the knot, 
(not on a crossing site);

ii) orient the knot;
iii)  assign a number to each crossing site

in increasing order according to orientation, all around the knot; 
iv)  list the sequence of numbers by assigning a negative sign to even 

overpasses;

1

2

3
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�  Rule:

i)  fix an origin on the knot, 
(not on a crossing site);

ii) orient the knot;
iii)  assign a number to each crossing site

in increasing order according to orientation, all around the knot; 
iv)  list the sequence of numbers by assigning a negative sign to even 

overpasses;
iv)  starting from the odd numbers group odd and even numbers 

assigned to each crossing in separate ordered sequences, by 
placing the odd sequence above the even sequence; 

1

2

3

{ 1  2  3  4  5  6 } 

4

5

6

1  3  5
4  6  2
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�  Rule:

i)  fix an origin on the knot, 
(not on a crossing site);

ii) orient the knot;
iii)  assign a number to each crossing site

in increasing order according to orientation, all around the knot; 
iv)  list the sequence of numbers by assigning a negative sign to even 

overpasses;
iv)  starting from the odd numbers group odd and even numbers 

assigned to each crossing in separate ordered sequences, by 
placing the odd sequence above the even sequence; 

v) the set of even sequence represents the DT code.

1

2

3

{ 1  2  3  4  5  6 } 

4

5

6

1  3  5
4  6  2

DT code:  [4  6  2]
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DT (Dowker-Thistlethwaite) code: a worked-out example

1

2

3
4

5

6
7

8
9

10
11

12

{1  2  3  4  5  6  7  8  9  10  11  12} 

1   3   5  7    9    11
6  –12  2  8  –4  –10  
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DT (Dowker-Thistlethwaite) code: a worked-out example

1

2

3
4

5

6
7

8
9

10
11

12

{1  2  3  4  5  6  7  8  9  10  11  12} 

1   3   5  7    9    11
6  –12  2  8  –4  –10  

DT code:
         [6  –12  2  8  –4  –10]  

�  Remark: mirror knots have same DT code
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Exercise: determine the DT code of this knot

DT code:  [14  12  10  2  18  16  8  6  4]  



… and what about these?

(a)                                               (b)



�  Skein relations: 
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�  Skein relations: 

(V.1)

(V.2)

V (K ) :

Jones polynomial  V ( K )

�  Figure-of-eight knot F 8 :

unknot H−

:
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�  Left-handed trefoil knot T L :

unknot

:
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By replacing τ (dummy variable) by t, we have:

 Knot type      Jones polynomial
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Jones polynomials of first knots

By replacing τ (dummy variable) by t, we have:

 Knot type      Jones polynomial

…                                  ...

Code
−4{ }(−1+1 0+1)

−2{ }(+1−1+1−1+1)
…   ...



Alexander-Briggs notation (up to 9 crossings – Adams, 1994)
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Alexander-Briggs notation (up to 9 crossings – Adams, 1994)
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- Alexander-Briggs notation
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Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

- Alexander-Briggs notation
  (knot/link type)
- Conway notation
- hyperbolic volume
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Alexander-Briggs notation (up to 9 crossings – Adams, 1994)

- Alexander-Briggs notation
  (knot/link type)
- Conway notation
- hyperbolic volume
- Jones notation 
  (minimum degree & coefficients)

T L : 

F 8 : 



Alexander-Briggs notation (up to 10 crossings)

# of link components

… ...



Alexander-Briggs notation (up to 10 crossings)

# of link components

Alexander-Briggs notation up to 
10 crossings; then DT code of 
type “Kcmina123” or “Kcminn123” 
in lexicographical order 

… ...
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Online databases - 1
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Knot theory software - 1
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Knot theory software - 3
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Alexander-Briggs tabulation vs. alternative tabulations
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Alexander-Briggs tabulation vs. alternative tabulations



Knot tightening software



Knot tightening software

knot tightening



Knot tightening software

knot tightening



Knot tightening software

knot tightening link tightening



Knot tightening software

knot tightening link tightening

�  Ropelength: 



Knot tightening software

knot tightening link tightening

�  Ropelength: 



Tight knots and groundstate energy spectrum

M = magnetic/elastic energy (in non-dimensional units)



Tight knots and groundstate energy spectrum

(Alexander-Briggs tabulation)

M = magnetic (elastic) energy (in non-dimensional units)

M



Tight knots and groundstate energy spectrum

M = magnetic (elastic) energy (in non-dimensional units)

(increasing ropelength)

M

(Ricca & Maggioni, J Phys A 2014)



Tight knots and groundstate energy spectrum

M = magnetic (elastic) energy (in non-dimensional units)

(Ricca & Maggioni, J Phys A 2014)

(increasing ropelength)

M



Knot visualization, calculator and software explorer

Visualization, exploration and experimentation: 
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Visualization, exploration and experimentation: 



KnotPlot (Scharein, 1998-2011)

�  Database: 

   - Knot catalogue of first 384 knots and links (knots up to 10 crossings, links

     up to 4 components and 9 crossings);

   - Geometric and topological properties such as average crossing number,

     writhe, ropelength, linking number, bridge number, DT code, Alexander and 

     HOMFLYPT polynomial;
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KnotPlot (Scharein, 1998-2011)

�  Database: 

   - Knot catalogue of first 384 knots and links (knots up to 10 crossings, links

     up to 4 components and 9 crossings);

   - Geometric and topological properties such as average crossing number,

     writhe, ropelength, linking number, bridge number, DT code, Alexander and 

     HOMFLYPT polynomial;

�  Knot visualization: 

   - From polygonal curves to ideal knot shapes rendering;

   - Knot coordinates, Euler angles, lattice models;

�  Knot construction: 

   - Automatic constructions by Conway’s tangles of chains and Lissajous knots;

   - 3D sketching of knots, braids, chains;

   - Transformations of known knots into new knots by local and global mutations;

�  Knot dynamics: 

   - Energy relaxation by applied forces;

   - Interactive manipulation of knots by local and global actions.



KnotPlot (Scharein, 1998-2011)



Selected references

Books:
An elementary mathematical  introduction:
- Adams, C.C. 1994 The Knot Book. W.H. Freeman & Co., New York.
A comprehensive, non-mathematical collection:
- Ashley, C. 1944 The Ashley Book of Knots. Doubleday, New York.
An overall view of modern developments:
- Kauffman, L.H. 2001 Knots and Physics. World Scientific, Singapore.
A rigorous introduction without mathematics:
- Sossinsky, A. 2002 Knots - Mathematics with a Twist. Harvard U. Press, 

Cambridge.



Selected references

Books:
An elementary mathematical  introduction:
- Adams, C.C. 1994 The Knot Book. W.H. Freeman & Co., New York.
A comprehensive, non-mathematical collection:
- Ashley, C. 1944 The Ashley Book of Knots. Doubleday, New York.
An overall view of modern developments:
- Kauffman, L.H. 2001 Knots and Physics. World Scientific, Singapore.
A rigorous introduction without mathematics:
- Sossinsky, A. 2002 Knots - Mathematics with a Twist. Harvard U. Press, 

Cambridge.

Online resources:
-  KnotAtlas: katlas.math.toronto.edu/wiki
-  KnotInfo: indiana.edu/~knotinfo
-  KnotFinder: indiana.edu/~knotinfo/knotfinder.php
-  KnotPlot:  knotplot.com
-  KnotScape: pzacad.pitzer.edu/~jhoste/HosteWebPages/kntscp.html
-  LinKnot:  www.mi.sanu.ac.rs/vismath/linknot/index.html
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