Errata - Classical and Quantum Statistical Physics

C. $\operatorname{Heissen}^{2}{ }^{a}$ and A. Sagnotti ${ }^{b}$
${ }^{a}$ Nordita, Stockholm University and KTH Royal Institute of Technology,
Hannes Alfvéns väg 12, 10691 Stockholm, Sweden Department of Physics and Astronomy, Uppsala University,
Box 516, 75120 Uppsala, Sweden
e-mail: carlo.heissenberg@sns.it
${ }^{b}$ Scuola Normale Superiore and INFN
Piazza dei Cavalieri, 7
56126 Pisa ITALY
e-mail: sagnotti@sns.it

- p. 18 - In eq. (2.6) the $(2,1)$ element should have a " + " sign.
- p. 20 - In line 15 H should be H.
- p. 21 - In eq. (2.29) the last two terms should have a factor k_{B}.
- p. 24-P should be replaced by $\frac{P}{T}$.
- p. 25 - Eq. (2.59) should read

$$
\frac{\partial \sigma}{\partial p_{i}}=-1-\log p_{i}-\lambda=0 .
$$

- p. 25 - Eq. (2.61) should read

$$
\frac{\partial^{2} \sigma}{\partial p_{i} \partial p_{j}}=-\frac{1}{p_{i}} \delta_{i j} .
$$

- p. 27 - The normalized $f(p)$ should be

$$
f(p)=4 \pi\left(\frac{\beta}{2 \pi m}\right)^{\frac{3}{2}} p^{2} e^{-\beta \frac{p^{2}}{2 m}} .
$$

- p. 35 - In problem $2.2 d$ should be D.
- p. 36 - In problem $2.4 d$ should be D.
- p. 41 - In eq. (3.12) $\langle x|$ should read $\langle\mathbf{x}|$.
- p. 65 - Bottom of the page: the inversion point should be x^{\star}, for consistency with the notation in the following.
- p. 75 - The argument of the sine function should be $\frac{\pi \Delta_{n}}{\hbar \omega}$.
- p. 78 - The prefactor of the integral in eq. (3.311) should be $\frac{m \omega \eta^{2}}{2}$.
- p. 79 - In eq. (3.313) the measure should be $[\mathcal{D} x(\tau)]$.
- p. 79 - In eq. (3.317) the measure should be $[\mathcal{D} \xi(\tau)]$.
- p. 98 - In eq. (4.6) the factor $N k_{B}$ should be $3 N k_{B}$.
- p. 99 - In eqs. (4.17) and (4.18) V should replaced by $\frac{V}{T}$.
- p. 105 - would eventually lie at the heart of laser systems \rightarrow that would eventually lie at the heart of laser systems.
- p. 106-dx is missing in the integrand.
- p. 113 - In eq. (5.3) the sum should start from $n=1$.
- p. 134 - Eq. (7.5) should read

$$
\frac{\partial^{2} \sigma}{\partial p_{I_{1}, N_{1}} \partial p_{I_{2}, N_{2}}}=-\frac{1}{p_{I_{1}, N_{1}}} \delta_{I_{1} I_{2}} \delta_{N_{1} N_{2}} .
$$

- p. 138 - In eqs. (7.31) and (7.32), $\left(\frac{2 \pi m}{h^{2} \beta}\right)$ should be $\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}}$.
- p. 152 - and the following. The Fermi energy is sometimes called E_{F} and sometimes ϵ_{F}. It should be E_{F} everywhere.
- p. 153 - In eq. (8.94) V should be N, the number of particles.
- p. 156 - The first integral in eq. (8.109) should have an overall "-" sign.
- p. 158 - One should separate the $l=0$ term in eq. (8.123), writing

$$
N=G(\mu)+2 \sum_{l=1}^{\infty} G^{(2 l)}(\mu)\left(k_{B} T\right)^{2 l}\left(1-2^{1-2 l}\right) \zeta(2 l)
$$

- p. 158 - In the second line of eq. (8.121) the factor of $g\left(\epsilon_{F}\right)$ should be $\left(\mu-\epsilon_{F}\right)$. One should similarly separate the $l=0$ term in eq. (8.123).
- p. 158 - One should separate the $l=0$ term in eq. (8.120), writing

$$
U(t)=H(\mu)+2 \sum_{l=1}^{\infty} H^{(2 l)}(\mu)\left(k_{B} T\right)^{2 l}\left(1-2^{1-2 l}\right) \zeta(2 l)
$$

- p. 161 - The shaded region ought to be the region to the left of the solid curve, but unfortunately it is not displayed in the figure.
- p. $\mathbf{1 7 3}$ - In the whole page "!" should read " ω ".
- p. $\mathbf{1 8 0}$ - It would be clearer if ϵ were replaced by $-|\epsilon|$ in eqs. (8.266) and (8.267).
- p. 184 - More generally one can obtain in general two conditions, demanding continuity of U and its first derivative at the end of the charge distribution. The former determines ϵ_{F}, and there are more solutions for charge distributions terminating at a finite value of r.
- p. 185 - In eq. (8.300) $g(x)$ should read $g\left(x_{F}\right)$.
- p. 191 - In Ex. 8.19 it would be better to replace ϵ by $-|\epsilon|$, keeping the same notation as in the main body of the chapter.
- p. 198 - In eq. (9.54) there should be no $\frac{1}{2}$, since there is no transition to a classically forbidden region.
- p. 200 - The "," at the end of the first line should be removed.
- p. 201 - The comment after eq. (10.193) should be amended. The second contribution is independent of B and does not contribute to the susceptibility, when spelled out in detail. The starting point is
$\mathcal{M}=-8 \mu_{B} \sum_{n} \gamma\left(n+\frac{1}{2}\right) \theta\left[E_{F}-2 \mu_{B} B\left(n+\frac{1}{2}\right)\right]+2 \frac{E_{F}}{B_{0}} \sum_{n} \theta\left[E_{F}-2 \mu_{B} B\left(n+\frac{1}{2}\right)\right]$.
to be considered for

$$
\frac{\mathcal{N}}{2(j+2)}<\frac{B}{B_{0}}<\frac{\mathcal{N}}{2(j+1)},
$$

so that the first $j+1$ levels are full and the $j+2$-nd level is only partly full.
Recalling that $E_{F}=2 \mu_{B} B\left(j+\frac{3}{2}\right)$ and $\gamma=\frac{B}{B_{0}}$, the sums become

$$
\begin{aligned}
\mathcal{M} & =-8 \mu_{B}\left[\sum_{n=0}^{j} \gamma\left(n+\frac{1}{2}\right)+(\mathcal{N}-\gamma(j+1))\left(j+\frac{3}{2}\right)\right] \\
& +4 \mu_{B}\left(j+\frac{3}{2}\right)\left[\gamma \sum_{n=0}^{j} 1+(\mathcal{N}-\gamma(j+1))\right] .
\end{aligned}
$$

As a result

$$
\mathcal{M}=-8 \mu_{B}\left[\frac{\gamma}{2}(j+1)^{2}+(\mathcal{N}-\gamma(j+1))\left(j+\frac{3}{2}\right)\right]+4 \mu_{B} \mathcal{N}\left(j+\frac{3}{2}\right)
$$

and collecting the different terms finally gives

$$
\mathcal{M}=4 \mu_{B} \gamma(j+1)(j+2)-4 \mu_{B} \mathcal{N}\left(j+\frac{3}{2}\right)
$$

so that

$$
\chi=\frac{4 \mu_{B}}{B_{0}}(j+1)(j+2)>0 .
$$

- p. 202 - In eq. (9.86) ν_{B} should be μ_{B}.
- p. 206 - The last problem would be better formulated like this: ... with magnetic moments $(\pm \mu, \pm 2 \mu, \pm 3 \mu)$.
- p. 219 - Eq. (10.84) should read

$$
\mathcal{M}=\frac{1}{\beta} \frac{\partial \log Z}{\partial B}=N \mu \tanh \left(\xi^{\star}\right) .
$$

- p. 219 - The factor β should not appear in the second term in eq. (10.85).
- p. 230 - After eq. (10.177), the text should read $C=\frac{1}{2 T_{c}}$ for $T<T_{c}$.
- p. 233 - In eq. (10.193) the first coefficient should read $-\frac{1}{2}$.
- p. 233 - The Helmoltz free energy should be denoted by A, not by F, as elsewhere.
- p. 253 - The factor N should not be present in Eqs. (11.49) and (11.50).
- p. 319 - In eq. (14.41) P should read f.
- p. 322 - Eq. (14.52) should read

$$
\log f=\alpha-\frac{m}{2 k_{B} T}(\mathbf{v}-\mathbf{u})^{2}
$$

- p. 330 - after eq. (14.108) remove "which".
- p. 337 - In eq. (A.13), last line, " + -" should read " -".
- p. 334 - The whole discussion is confused and not to the point. The reader is kindly asked to ignore it, starting from line 2 and to resume reading when she/he gets to the last paragraph. We cannot track how such incorrect statements slipped in, but for one matter two-term recursion relations would obtain factoring out $e^{ \pm z^{2} / 4}$, i.e. letting $\psi=e^{ \pm z^{2} / 4} \chi$. We are grateful to M. Barbieri for calling this issue, and several misprints, to our attention.
- p. 338 - In the last of Eqs. (A.23) the integrand should be $\left(x-x_{0}\right)^{2} f(x)$.
- p. 348 - No need to move to the next line before "Eq. (D.1) by ...".

