A mountain pass theorem
(existence and bifurcation)

Hans-Jörg Ruppen*

Abstract. We present a new variational characterization of multiple critical points for even energy functionals corresponding to nonlinear Schrödinger equations of the following type:

\[
\begin{align*}
-\Delta u + V(x)u - q(x)|u|^{\sigma}u &= \lambda u, \quad (x \in \mathbb{R}^N) \\
u &\in H^1(\mathbb{R}^N) \setminus \{0\}.
\end{align*}
\]

We assume \(N \geq 3 \), \(q(x) \in L^\infty(\mathbb{R}^N) \), \(q(x) > 0 \) a.e. with \(\lim_{|x| \to \infty} q(x) = 0 \) and \(0 < \sigma < \frac{4}{N-2} \). Our results cover the following 3 cases in a uniform way:

1. \(V(x) \equiv 0 \);
2. \(V(x) \) is a Coulomb potential and
3. \(V(x) \in L^\infty(\mathbb{R}^N) \) with \(V(x + k) \equiv V(x) \) for all \(k \in \mathbb{Z}^N \).

The eigenvalue \(\lambda \) thereby may or may not lie inside a spectral gap.

Our variational characterization is “simple” and well suited for discussing multiple bifurcation of solutions.

References

*Ecole polytechnique fédérale de Lausanne EPFL, Lausanne, Switzerland, hans-joerg.ruppen@epfl.ch