RESEARCH DESCRIPTION

During the year 2017 I plan to work on two main themes.

Motivic classes of classifying stacks for connected algebraic groups. Let k be a field. The Grothendieck ring of varieties $K_0(\text{Var}_k)$ was first defined by Grothendieck in 1964 in a letter to Serre. Its main application so far is Kontsevich’s theory of motivic integration: see for example [Loo00].

Variants of this, that contain classes for all algebraic stacks of finite type over k with affine stabilizers, have been introduced by several authors: see [BD07], [Ekeb], [Joy07], [Toe05]. In the present paper we use the version due to Ekedahl, which we denote by $K_0(\text{Stack}_k)$; it has the merit of being universal, so it maps to all the other versions.

By definition, every algebraic stack \mathcal{X} of finite type over k with affine stabilizers has a class $\{\mathcal{X}\}$ in $K_0(\text{Stack}_k)$. In particular, given an affine group scheme of finite type G over k, we obtain a class $\{BG\}$ for the classifying stack BG in $K_0(\text{Stack}_k)$. The problem of computing $\{BG\}$ is very interesting; it is morally related with the problem of stable rationality of fields of invariants for generically free representations, although no direct implication is known (see the discussion in [Ekea, § 6]).

The case of a finite group is thoroughly discussed in [Ekea]; in many cases $\{BG\} = 1$, although there are examples of nilpotent finite groups for which this fails.

The case when G is connected is also very interesting. Recall that an algebraic group is special if every G-torsor is Zariski-locally trivial; GL_n, SL_n and Sp_n are all special. If $P \to S$ is a G-torsor and G is special, then we have $\{P\} = \{G\}\{S\}$ (this is immediate when S is a scheme, and it was shown by Ekedahl when S is an algebraic stack). In particular, applying this to the universal torsor $\text{Spec}\ k \to BG$ we get the formula $\{BG\} = \{G\}^{-1}$ for special groups.

It is somewhat surprising that the equality $\{BG\} = \{G\}^{-1}$ holds for several G that are not special. These are the known cases.

1. $G = \text{PGL}_2$ and PGL_3 (by D. Bergh, [Ber16]).
2. $G = \text{SO}_n$ (by A. Dhillon and M. Young in [DY16] when n is odd, by M. Talpo and myself in [TV] for the general case).
3. $G = \text{Spin}_n$ for $n \leq 8$ and when G is the simply connected form of G_2 (by R. Pirisi and M. Talpo, unpublished).

This might be related with the fact that quotient spaces of generically free representations of connected algebraic groups tend to be stably rational; in fact, no examples are known in which they are not rational (see [Böh] for a survey of the known results in this direction).

I have started investigating the case $G = \text{PGL}_n$. The only known technique for computing $\{BG\}$ is to take a representation of G and stratify it, so that the classes of the strata can be computed. The obvious representation to use for PGL_n is the adjoint representation; this idea has been used for studying the Chow ring of $\mathcal{B}\text{PGL}_n$ (see [Vez00, Vis07]). The orbit structure is much complex that that, for
We define a stack \(X \) when \(\mathcal{A} \) is a quotient stack \([U/G]\), where \(U \) is a smooth scheme of finite type over a field \(k \) and \(G \) is an affine algebraic group on \(k \), we obtain a Chow ring \(A^*_G(U) = A^*(\mathcal{X}) \), which only depends on \(\mathcal{X} \) and not on the presentation of \(\mathcal{X} \) as a quotient stack. If \(\mathcal{X} \) is Deligne–Mumford, or, equivalently, the action of \(G \) on \(U \) has finite reduced stabilizers, then \(A^*(\mathcal{X}) \otimes \mathbb{Q} \) coincides with the rational Chow ring of \(\mathcal{X} \), which had been earlier studied by several authors ([Mum83, Gil84, Vis89].

The ring \(A^*(\mathcal{X}) \) is usually much harder to compute than \(A^*(\mathcal{Z}) \otimes \mathbb{Q} \); for example, consider the moduli stack \(\mathcal{M}_g \) of smooth curves of genus \(g \), with \(g \geq 2 \); the ring \(A^*(\mathcal{M}_g) \) has been computed only for \(g = 2 \) [Vis98] (notice that in this case \(A^*(\mathcal{M}_2) \) coincides with the rational Chow ring of \(\mathcal{Z} \)).

In all these calculations the essential point is the determination of the Chow ring of certain stacks of hypersurfaces. More precisely, let \(n \) and \(d \) be positive integers. We define a stack \(\mathcal{Y}_{n,d} \) as follows: an object of \(\mathcal{Y}_{n,d} \) over a \(k \)-scheme \(S \) consists of a vector bundle \(F \) of rank \(n \), and a Cartier divisor \(X \subseteq \mathbb{P}(F) \) whose restriction to every fiber is a hypersurface of degree \(d \).

An alternate description of \(\mathcal{Y}_{n,d} \) is as follows. Denote by \(W_{n,d} \) the vector space of homogeneous polynomials of degree \(d \) in \(n \) variables, with its natural action of \(\text{GL}_n \). Set \(P_{n,d} = \mathbb{P}(W_{n,d}) \); so \(P_{n,d} \) is the projective space of hypersurfaces of degree \(d \) in \(\mathbb{P}^{n-1} \). If \(Z \subseteq P_{n,d} \) is the discriminant locus, we have

\[
\mathcal{Y}_{n,d} = [(P_{n,d} \setminus Z)/\text{GL}_n].
\]

By standard facts of equivariant intersection theory, this gives a set of generators for the ring \(A^*(\mathcal{Y}_{n,d}) = A^*_{\text{GL}_n}(P_{n,d} \setminus Z) \), which are the Chern classes \(c_1, \ldots, c_n \) of the tautological representation of \(\text{GL}_n \), and \(h = c_1(O_{P_{n,d}}(1)) \). The relations among these generators \(c_1, \ldots, c_n, \) and \(h \) are obtained from the classes of the image of the pushforward \(A_{\text{GL}_n}(Z) \to A_{\text{GL}_n}(P_{n,d}) \).

A set of natural relations are obtained as follows. Let \(\tilde{Z} \subseteq P_{n,d} \times \mathbb{P}^{n-1} \) be the reduced subscheme consisting of pairs \((X,p)\), where \(X \) is a hypersurface of degree \(d \) in \(\mathbb{P}^{n-1} \), and \(p \) is a singular point of \(X \). Then \(\tilde{Z} \) is the image of \(Z \) in \(P_{n,d} \), hence every class in \(A^*_{\text{GL}_n}(\tilde{Z}) \) when pushed down to \(A^*_{\text{GL}_n}(P_{n,d}) \) gives a relation in \(A^*_{\text{GL}_n}(P_{n,d}) \). The push forward of the Chow ring \(A^*_{\text{GL}_n}(\tilde{Z}) \) is easily determined;
this gives certain relations $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}[c_1, \ldots, c_n, h]$. When $d = 2$ or $n = 2$ it is proved in [EF08] that $\alpha_1, \ldots, \alpha_n$ generate the ideal of relations, so that

$$A^*(\mathcal{X}_{n,d}) = \mathbb{Z}[c_1, \ldots, c_n, h]/(\alpha_1, \ldots, \alpha_n).$$

In the general case, it is easy to see that the α_i generate the ideal of relation of the generators in $A^*(\mathcal{X}_{n,d}) \otimes \mathbb{Q}$.

In [FV16], Damiano Fulghesu and myself have computed the ideal of relations in the case $n = 3$, $d = 3$; it turns out that, besides the relations α_1 and α_2 above, one extra generator in degree 2.

Together with Fulghesu I plan to work on the next case, $A^*(\mathcal{X}_{3,4})$, the case of plane quartics. This is particularly interesting, because it would give as a byproduct a presentation of the Chow ring of non-hyperelliptic curves of genus 3.

We have a fairly clear idea of the geometry involved, and a strategy for the calculation; the details, however, are fairly complex.

References

