Condensed matter and quantum information theory group


Research Team

  • Giuseppe La Rocca
    Professore associato
  • Marco Polini
    Professore a contratto
  • Fabio Taddei
    Professore a contratto

Teaching activity:

The group contributes to the teaching activity of the SNS with a very well-structured series of courses for students of the undergraduate course, as well as for those of the PhD courses in Physics and Nanoscience:

Classical electrodynamics I,
Classical electrodynamics II,
Thermodynamics and statistical physics,
Introductory Quantum Physics,
Quantum Mechanics, Introduction to the Structure of Matter,
Quantum Information,
Quantum Technologies: systems and methods,
Condensed Matter Physics,
Seminar series - Condensed Matter Physics.


During the entire academic year 2018 an informal cycle of internal seminars on a weekly basis (Quo Vadis seminars) was activated to give space to the students of the group to present their works and report on works of common interest that have appeared in the literature (journal club ).


68 in total, of which: 45 produced and published in the 2018 calendar year; 20 produced and submitted in 2018 and officially published in 2019; 3 produced and submitted in 2018 but still currently being refereed.



  1. L. Du, et al., “Phase-dependent topological interface state and spatial adiabatic passage in a generalized Su-Schrieffer-Heeger model”, Phys. Rev. A (2019), in the press
  2. A. Zavatta, M. Artoni, G. La Rocca, “Engineering of heralded narrowband color-entangled states”, Physical Review A 99, 031802 (2019)
  3. J.E. Leon Padilla, et al., “g-factor Anisotropy Inversion in InAsGa 2D Nanostructures”, Physica Status Solidi (b) 256, 1800643 (2019).
  4. J. Wu, et al., "Conditional phase-shift enhancement through dynamical Rydberg blockade", Europhys. Lett. 120, 54002 (2018).
  5. S. Zanotto, G.C. La Rocca, A. Tredicucci, “Understanding and overcoming fundamental limits of asymmetric light-light switches”, Opt. Express 26, 3618 (2018).
  6. X.-D. Tian, et al., “Nonclassical storage and retrieval of a multiphoton pulse in cold Rydberg atoms”, Phys. Rev. A 97, 043811 (2018).
  7. M. A. Toloza Sandoval, et al., “Mesoscopic g-factor renormalization for electrons in III-V interacting nanolayers”, Phys. Rev. B 98, 075312 (2018).
  8. G. M. Andolina, et al., “Quantum versus classical many-body batteries”; Phys. Rev. B 99, 205437 (2019); arXiv:1812.04669
  9. F. Kianvash, M. Fanizza, V. Giovannetti “Optimal Quantum Subtracting Machine”, Phys. Rev. A 99, 052319 (2019), arXiv:1811.07187
  10. D. Farina, et al., “Charger-mediated energy transfer for quantum batteries: an open system approach”, Phys. Rev. B 99, 035421 (2019); arXiv:1810.10890
  11. O. Malliet, et al., “Optimal probabilistic work extraction beyond the free energy difference with a single-electron device”, Phys. Rev. Lett. 122, 150604 (2019); arXiv:1810.06274
  12. A. Cuevas, et al., “All-optical implementation of collision-based evolutions of open quantum systems”, to appear on Sci. Rep. arXiv:1809.01922
  13. G. Blasi, et al., “Manipulation of Cooper pair entanglement in hybrid topological Josephson junctions”, Phys. Rev. B 99, 064514 (2019), arXiv:1808.09709
  14. T. Bullock, et al., “Entanglement Protection via Periodic Environment Resetting in Continuous Time Quantum Dynamical Processes”, Phys. Rev. A 98, 042301 (2018), arXiv:1808.02249
  15.  A. H. Kiilerich, A. De Pasquale, V. Giovannetti “A dynamical approach to ancilla assisted quantum thermometry”, Phys. Rev. A 98, 042124 (2018), arXiv:1807.11268
  16. G. M. Andolina, et al., “Extractable work, the role of correlations, and asymptotic freedom in quantum batteries”, Phys. Rev. Lett. 122, 047702 (2019), arXiv:1807.08656
  17. V. Cavina, et al., “Variational approach to the optimal control of coherently driven, open quantum system dynamics”, Phys. Rev. A 98, 052125 (2018), arXiv:1807.07450
  18. S. Cusumano, et al., “Entropy production and asymptotic factorization via thermalization: a collisional model approach”, Phys. Rev. A 98, 032119 (2018), arXiv:1807.04500
  19. D. Gatto, A. De Pasquale, V. Giovannetti “Degradation of Entanglement in Markovian Noise”, Phys. Rev. A 99, 032307 (2019); arXiv:1806.07468
  20. G. M. Andolina, et al., “Charger-mediated energy transfer in exactly-solvable models for quantum batteries”, Phys. Rev. B 98, 205423 (2018); arXiv:1807.04031
  21. V. Cavina, et al., “Bridging thermodynamics and metrology in non-equilibrium Quantum Thermometry”, Phys. Rev. A 98, 050101 (2018); arXiv:1806.05098
  22. M. Fanizza, A. Mari, V. Giovannetti, “Optimal universal learning machines for quantum state discrimination”, to appear in IEEE Inf. Transf. arXiv:1805.03477
  23. G. De Palma, et al., “Gaussian optimizers for entropic inequalities in quantum information”, Journal of Mathematical Physics 59(8), 081101 (2018); arXiv:1803.02360
  24. T. Matsubara, et al., “Optimal Gaussian Metrology for Generic Multimode Interferometric Circuit”, New J. Phys. 21, 033014 (2019); arXiv:1802.01452
  25. L. Mancino, et al., “Geometrical bounds on irreversibility in open quantum systems”, Phys. Rev. Lett. 121, 160602 (2018); arXiv:1801.05188
  26. M. Rosati, A. Mari, V. Giovannetti, “Narrow Bounds for the Quantum Capacity of Thermal Attenuators”, Nature Communications 9, 4339 (2018); arXiv:1801.04731
  27. M. Rosati, V. Giovannetti, “Asymmetric information capacities of reciprocal pairs of quantum channels”, Phys. Rev. A 97, 052318 (2018); arXiv:1801.03156
  28. V. Cavina, et al., “Optimal thermodynamic control in open quantum systems”, Phys. Rev. A 98, 012139 (2018); arXiv:1709.07400
  29. S. Cusumano, A. Mari, V. Giovannetti, “Interferometric modulation of quantum cascade interactions”, Phys. Rev. A 97, 053811 (2018) arXiv:1709.05826
  30. G. De Palma, et al., “The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have Gaussian Maximizers”, Annales Henri Poincaré (2018); arXiv:1610.09967
  31. M. Beconcini, M. Polini, F. Taddei, “Nonlocal superconducting correlations in graphene in the quantum Hall regime”, Phys. Rev. B 97, 201403(R) (2018).
  32. B. Bhandari, et al., “Thermal drag in electronic conductors”, Phys. Rev. B 98, 035415 (2018).
  33. P. A. Erdman, et al., “Absorption refrigerators based on Coulomb-coupled single-electron systems”, Phys. Rev. B 98, 045433 (2018).
  34. F. M. Surace, et al., “Floquet time crystals in clock models”, Phys. Rev. B 99, 104303 (2019); arXiv:1811.12426
  35. J. Jin, et al., “Phase diagram of the dissipative quantum Ising model on a square lattice”, Phys. Rev. B 98, 241108 (2018), arXiv:1810.08112
  36. S. Barberino, et al., “Topological Devil's staircase in atomic two-leg ladders”, New J. Phys. 21, 043048 (2019), arXiv:1810.02337
  37. F. Tonielli, et al., “Orthogonality catastrophe in dissipative quantum many body systems”, Phys. Rev. Lett. 122, 040604 (2019), arXiv:1809.09088
  38. M. Keck, D. Rossini, R. Fazio, “Persistent currents by reservoir engineering”, Phys. Rev. A 98, 053812 (2018), arXiv:1809.02964
  39. J. Tangpanitanon, et al., “Hidden Order in Quantum Many-body Dynamics of Driven-Dissipative Nonlinear Photonic Lattices”, Phys. Rev. A 99, 043808 (2019); arXiv:1806.10762
  40. S. Barbarino, et al., “Engineering statistical transmutation of identical quantum particles”, Phys. Rev. B 99, 045430 (2019), arXiv:1806.09971
  41. S. Pappalardi, et al., “Scrambling and entanglement spreading in long-range spin chains”, Phys. Rev. B 98, 134303 (2018), arXiv:1806.00022
  42. O. Scarlatella, R. Fazio, M. Schiro’, “Emergent Finite Frequency Criticality of Driven-Dissipative Correlated Lattice Bosons”, Phys. Rev. B 99, 064511 (2019), arXiv:1805.02770
  43. L. Amico, et al., “Mesoscopic electron transport and atomic gases, a review of Frank W. J. Hekking's scientific work”, SciPost Phys. 5, 009 (2018), arXiv:1804.06213
  44. S. Sonar, et al., “Squeezing Enhances Quantum Synchronization”, Physical Review Letters 120, 163601 (2018); arXiv:1801.10383
  45. E. T. Owen, et al., “Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice”; New J. Phys., 20, 045004 (2018); arXiv:1711.11309
  46. S. Notarnicola, et al., “From localization to anomalous diffusion in the dynamics of coupled kicked rotors”, Phys. Rev. E 97, 022202 (2018), arXiv:1709.05657
  47.  A. Biella, et al., “Linked cluster expansions for open quantum systems on a lattice”, Phys. Rev. B 97, 035103 (2018); arXiv:1708.08666
  48. F. Iemini, et al., “Boundary time crystals”, Phys. Rev. Lett. 121, 035301 (2018); arXiv:1708.05014
  49. S. Barbarino, et al., “Topological phases in odd-legs frustrated synthetic ladders”, Phys. Rev. A 97, 013634 (2018), arXiv:1708.02929
  50. P. Novelli, et al., “Failure of conductance quantization in two-dimensional topological insulators due to non-magnetic impurities”, Phys. Rev. Lett. 122, 016601 (2019), arXiv:1806.10344.
  51. K.-J. Tielrooij, et al., “Out-of-plane heat transfer in van der Waals stacks: electron-hyperbolic phonon coupling”, Nature Nanotech. 13, 41 (2018).
  52. G. Soavi, et al., “Broadband, electrically tuneable, third harmonic generation in graphene”, Nature Nanotech. 13, 583 (2018).
  53. D.A. Bandurin, et al., “Resonant Terahertz detection using graphene plasmons”, Nature Commun. 9, 5392 (2018).
  54. A. Tomadin, et al., “The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies”, Science Advances 4, 5313 (2018).
  55. D. Ferraro, et al., “High-power collective charging of a solid-state quantum battery”, Phys. Rev. Lett. 120, 117702 (2018).
  56. A. Gabbana, et al., “Prospects for the detection of electronic pre-turbulence in graphene”, Phys. Rev. Lett. 121, 236602 (2018).
  57. D. Kundys, et al., Nonlinear light mixing by graphene plasmons, Nano Lett. 18, 282 (2018).
  58. G.M. Andolina, F.M.D. Pellegrino, F.H.L. Koppens, and M. Polini, “Quantum non-local theory of topological Fermi arc plasmons in Weyl semimetals”, Phys. Rev. B 97, 125431 (2018).
  59. H. Rostami and M. Polini, “Nonlinear anomalous photocurrents in Weyl semimetals”, Phys. Rev. B 97, 195151 (2018).
  60. B.A. Braem, et al., “Scanning gate microscopy in a viscous electron fluid”, Phys. Rev. B 98, 241304(R) (2018)
  61. H. Rostami, et al., Piezoelectricity and valley Chern number in inhomogeneous hexagonal 2D crystals, npj 2D Materials and Applications 2, 15 (2018).
  62.  F. De Nicola, et al., “Multiband plasmonic Sierpinski carpet fractal antennas”, ACS Photon. 5, 2418 (2018).
  63. A. Principi, et al., “Confining graphene plasmons to the ultimate limit”, Phys. Rev. B 98, 035427 (2018).
  64. A.E. Del Rio Castillo, et al., “High-yield production of 2D crystals by wet-jet milling”, Mater. Horiz. 5, 890 (2018).
  65. A. Secchi and M. Polini, “Adiabatic perturbation theory of nonequilibrium light-controlled superconductivity”, Phys. Rev. B 98, 144513 (2018). Articoli su archivio in corso di referaggio:
  66. P. A. Erdman, et al., “Maximum Power and Corresponding Efficiency for Two-Level Quantum Heat Engines and Refrigerators”, arXiv:1812.05089
  67. Y. Yang, L. Xu, V. Giovannetti “A modified Hong-Ou-Mandel interferometer for two-parameter sensing”; arXiv:1811.05348
  68. A. Chia, et al., “The small-noise approximation in linear amplifiers: Limitations and beyond”; arXiv:1811.08105