Chemical-physical methods for atmospheric chemistry and astrochemistry
Prerequisites
Basic knowledge of mathematical analysis, linear algebra, thermochemistry, chemical kinetics and quantum mechanics.
Programme
The course deals with the theoretical-computational approaches for the prediction of the spectroscopic properties and reaction mechanisms of molecular systems of interest in environmental chemistry, with particular reference to atmospheric chemistry, and astrochemistry. Concerning the spectroscopic properties, attention will be focused on rotational and vibrational spectroscopies for which the computational protocols for determining the observables of interest will be presented. Concerning the modeling of reactivity, the course will focus on the study of reaction mechanisms and on the application of computational strategies for determining the thermochemical data and kinetic rate constants of the elementary reactions that constitute them. Attention will be focused on processes occurring both in the gas phase and at the gas-solid interface.
Educational aims
The course aims at providing and deepening the knowledge on theoretical-computational methods for the simulation of spectroscopic properties, thermochemical quantities and kinetic rate constants for the study of molecular systems and processes, both in the gas phase and in the condensed phase, relevant for environmental chemistry and astrochemistry.
Bibliographical references
Mainly lecture notes. Some suggested texts for individual topics are the following.
Rotational and vibrational spectroscopy:
G. Duxbury, Infrared Vibration-Rotation Spectroscopy, John Wiley & Sons, Chichester (2000).
V. Barone, Computational Strategies for Spectroscopy, John Wiley & Sons, Chichester (2000).
Chemical reactivity and kinetics:
R. W. Carr, Comprehensive Chemical Kinetics vol. 42, Modeling of Chemical Reactions, Elsevier, Amsterdam (2012).
H. DaCosta, M. Fan, Rate Constant Calculation for Thermal Reactions, John Wiley & Sons, Hoboken (2012).